3 3 3 Knecht (2-3fps) AR [3] 2. 2 Debevec High Dynamic Range( HDR) [4] HDR Derek [5] 2. 3 [6] 3. [6] x E(x) E(x) = 2π π 2 V (x, θ i, ϕ i )L(θ

Similar documents

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

( )

重力方向に基づくコントローラの向き決定方法

3D VR CAD 3D CAD CAD [1] CAD 3DCG [2] [3] CAD 3D NC CG [4] Ccurve XY C curve α C curve [5], [6], [7], [8], [9] 2 [10] 1 [11], [12] 2.2 [13] Tcu

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Gmech08.dvi

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-188 No /9/3 BRDF i

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

知能科学:ニューラルネットワーク

85 4

高等学校学習指導要領

高等学校学習指導要領

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {



() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

Gmech08.dvi

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1

JIS Z803: (substitution method) 3 LCR LCR GPIB

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

2 1 ( ) 2 ( ) i

海生研ニュース

The Physics of Atmospheres CAPTER :

yamato_2016_0915_色校_CS3.indd

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

0.1 I I : 0.2 I

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)

syuryoku

資料4-1 一時預かり事業について

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

proc.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

untitled

2

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

all.dvi


Transcription:

(MIRU212) 212 8 RGB-D 223 8522 3 14 1 E-mail: {ikeda,charmie,saito}@hvrl.ics.keio.ac.jp, sugimoto@ics.keio.ac.jp RGB-D Lambert RGB-D 1. Augmented Reality AR [1] AR AR 2 [2], [3] [4], [5] [6] RGB-D RGB-D RGB-D 3 3 2. 3. 4. 5. 6. 2. 2. 1 [2]

3 3 3 Knecht (2-3fps) AR [3] 2. 2 Debevec High Dynamic Range( HDR) [4] HDR Derek [5] 2. 3 [6] 3. [6] 3. 1 1 1 x E(x) E(x) = 2π π 2 V (x, θ i, ϕ i )L(θ i, ϕ i ) cos θ i sin θ i dθdϕ, (1) L(θ i, ϕ i ) (θ i, ϕ i ) cos θ i sin θ i dθ i dϕ i E(x) V (x, θ i, ϕ i ) x (θ i, ϕ i ) V = V = 1 x x (θ r, ϕ r ) u i(θ r, ϕ r ) (θ i, ϕ i ) (θ r, ϕ r ) (Bidirectional Reflectance Distribution Function: BRDF) i(θ r, ϕ r ) = k 2π π 2 V (θ i, ϕ i )R(θ i, ϕ i, θ r, ϕ r ) L(θ i, ϕ i ) cos θ i sin θ i dθdϕ, (2) k k R(θ i, ϕ i, θ r, ϕ r ) BRDF Lambert BRDF R d i(θ r, ϕ r ) = k 2π π 2 V (x, θ i, ϕ i )R d L(θ i, ϕ i ) cos θ i sin θ i dθdϕ (3) 2 θ i ϕ i N

i(u) = = V n (x)r d L n cos θ n S n L n, (4) i(u) u V n (x) n x R d L n k n θ n z n S n = V n (x)r d cos θ n L n S n N < = M L n. i = SL i(u 1 ) S 11 S 1N. =.. S.. mn i(u M ) S M1 S MN L 1.. L N (5) (5) [7], [8] (5) L n V n (x) cos θ n R d R d R d V n (x) u i (u) i (u) = R d L n cos θ n (6) (4) R d i(u) N i (u) = L n N j=1 L V n (x) cos θ n (7) j cos θ j R d (7) L n L n N j=1 L j cos θ j R d V n (x) cos θ n 3 4. RGB-D V n (x) cos θ n 3. 2 x E in (x) L E in (x) = L n cos θ n (8) (1) x E out (x) E out (x) = V n (x)l n cos θ n (9) V n (x) x n x u i in (u) E in (x) u i out (u) E out (x) E in (x) E out (x) i out (u) 4. i out (u) = i in (u) E out(x) E in (x) (1) RGB-D 3 V n (x) cos θ n V n (x) cos θ n 3 RGB RGB 3 3

2 V n (x) cos θ n L L 4. 1 3 RGB 4 (c obj, c bg, d obj, d bg ) 2 c, d RGB obj, bg diff c obj if c obj c bg > τ c c diff = (11) otherwise d obj if d obj d bg > τ d d diff = (12) otherwise τ d diff a obj = d diff (13) RGB RGB RGB RGB c diff d diff 3 3 a shadow = c diff ddiff (14) a obj a shadow d obj V n (x) cos θ n 4. 2 V n (x) cos θ n 3 V n (x) cos θ n V n (x), 3 x n 3 3 1 V n (x) = 2 V n (x) = 1 3 3 V n (x) 3 V n (x) = 1 3 V n (x) = 1

V n (x) = 1 cos θ n 3 x n θ n. 5.,, 5. 1 4 8 (4) (5) 4 Box 7 [6] Box Box V n (x) cos θ n Box RGB-D 5 2 RGB-D Microsoft Kinect < = θ < = 7 5 < = ϕ < 36 1 55 θ 7 5. 2 5 2 5 3 (Box, Duck2, Hemisphere) 7 (Combined) Box ( ) 5 2 RGB-D V n (x) V n (x) = 5. 3 Ground truth 5 3 Box Ground truth 5 Ground truth Real scene 2 Real scene 2 Box 2 Box Duck2 2 Box Duck2 Box RGB-D

4. V n (x) Hemisphere Box 2 Combined Duck2 Box Duck2 Duck2 V n (x) 5. 4 Box Duck2 2 1 Box Duck2 V n (x) 3(c) 2 3(a) (b) Hemisphere Box, Combined (Duck2 Hemisphere ) Hemisphere 6. RGB-D RGB-D V n (x) V n (x)., [9] [1] R. Azuma, A survey of augmented reality, Presence: Teleoperators and Virtual Environments, 6 (1997). [2], VRSJ, 4, 4, pp.623-63

5 (1999). [3] M. knecht, et al., Differential instant radiosity for mixed reality, in Proc. ISMAR (21). [4] P. Debevec, Rendering synthetic objects into real scenes: Bridging traditional and aimagebased graphics with global illumination and high dynamic range photography, in Proc. ACM SIGGRAPH, pp.189-198 (1998). [5] N. derek et al. Light Factorization for Mixed- Frequency Shadows in Augmented Reality, in Proc. ISMAR (211). [6], 41 SIG1(CVIM1) pp.31-4(2). [7] Gillm R.E, W. Murray M.H. Wright, Practical Optimization, Academic Press, London, UK(1981). [8] Coleman, R.F, Y. Li, A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables, SIAM Journal on Optimization, 6, 4, pp.14-158(1996). [9], CVIM 133 34 pp.21-28(22).