3 3 3 Knecht (2-3fps) AR [3] 2. 2 Debevec High Dynamic Range( HDR) [4] HDR Derek [5] 2. 3 [6] 3. [6] x E(x) E(x) = 2π π 2 V (x, θ i, ϕ i )L(θ

Similar documents
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-CVIM-190 No /1/24 RGB-D *1 *1 *1 Relighting with Dynamic Light Environments Using an RGB-D Camera

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

NAIST-IS-MT


ShadowingPlane_CamereReady.dvi

(a) (x, y, z) (θ, ϕ) 1(b) (s, t), (, ) 1(c) D R = (θ R, ϕ R ) C R = ( R, R ) D R C R F R(D R, C R) 1(d) D L = (θ L, ϕ L ) C L = ( L, L ) F L(D

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

( )

25 AR 3 Property of three-dimensional perception in the wearable AR environment

重力方向に基づくコントローラの向き決定方法

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

3D VR CAD 3D CAD CAD [1] CAD 3DCG [2] [3] CAD 3D NC CG [4] Ccurve XY C curve α C curve [5], [6], [7], [8], [9] 2 [10] 1 [11], [12] 2.2 [13] Tcu

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

Gmech08.dvi

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-188 No /9/3 BRDF i

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-CG-145 No.10 Vol.2011-CVIM-179 No /11/17 1 Rendering Techniques for Realistic Material Property R

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

*1 1 1 Augmented Telepresence Using Recorded Aerial Omnidirectional Videos Captured from Unmanned Airship Fumio Okura *1, Masayuki Kanbara 1 and Naoka

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

1 2 Web Work Supporting with Virtual Display using Augmented Reality Masahiro KANEKO 1 and Jiro TANAKA 2 With the spread of online storage services an

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

85 4

高等学校学習指導要領

高等学校学習指導要領

main.dvi

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

IPSJ-CVIM



() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

14 2 5

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

Gmech08.dvi

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1

JIS Z803: (substitution method) 3 LCR LCR GPIB

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE k

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

2 1 ( ) 2 ( ) i

ohpr.dvi

海生研ニュース

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

204/3 Vol. J97 A o. 3 HDR HDR wavelet-shrinkage wavelet wavelet wavelet-shrinkage wavelet RGB wavelet wavelet wavelet HDR wavelet 2.

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

The Physics of Atmospheres CAPTER :

yamato_2016_0915_色校_CS3.indd

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

A

0.1 I I : 0.2 I

九州大学学術情報リポジトリ Kyushu University Institutional Repository 多視点動画像処理による 3 次元モデル復元に基づく自由視点画像生成のオンライン化 : PC クラスタを用いた実現法 上田, 恵九州大学システム情報科学研究院知能システム学部門 有田, 大

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

impulse_response.dvi

Vol. 48 No. 1 Jan MR, MR A Sharing Method of Real Objects Differ in Syntax each other Based on a Virtual Sheet between Remote Mixed Reality Spac

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

2_05.dvi

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)

syuryoku


資料4-1 一時預かり事業について

high collar

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

情報処理学会研究報告 方向の組み合わせを変えながら反射光の強度を計測する この方法は単純であるが入射方向と反射方向の組み合わせ を同時に 1 つしか計測できないため すべての方向を計 測するには膨大な計測回数が必要となる問題がある その ため 計測を効率的に行う方法がこれまでに提案されてい る [3

proc.dvi

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

proc.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Xray.dvi

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Ω + θr θi H α N β = + φ φ r x φ i 2 diffuse component specular component (a) 1 (b) BRDF (R) (G) (B) BRDF f BRDF (x, θ i, φ i, θ r, φ r ). (1) 1(b) N φ

untitled


2

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

OHP.dvi


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

4‐E ) キュリー温度を利用した消磁:熱消磁

all.dvi


Transcription:

(MIRU212) 212 8 RGB-D 223 8522 3 14 1 E-mail: {ikeda,charmie,saito}@hvrl.ics.keio.ac.jp, sugimoto@ics.keio.ac.jp RGB-D Lambert RGB-D 1. Augmented Reality AR [1] AR AR 2 [2], [3] [4], [5] [6] RGB-D RGB-D RGB-D 3 3 2. 3. 4. 5. 6. 2. 2. 1 [2]

3 3 3 Knecht (2-3fps) AR [3] 2. 2 Debevec High Dynamic Range( HDR) [4] HDR Derek [5] 2. 3 [6] 3. [6] 3. 1 1 1 x E(x) E(x) = 2π π 2 V (x, θ i, ϕ i )L(θ i, ϕ i ) cos θ i sin θ i dθdϕ, (1) L(θ i, ϕ i ) (θ i, ϕ i ) cos θ i sin θ i dθ i dϕ i E(x) V (x, θ i, ϕ i ) x (θ i, ϕ i ) V = V = 1 x x (θ r, ϕ r ) u i(θ r, ϕ r ) (θ i, ϕ i ) (θ r, ϕ r ) (Bidirectional Reflectance Distribution Function: BRDF) i(θ r, ϕ r ) = k 2π π 2 V (θ i, ϕ i )R(θ i, ϕ i, θ r, ϕ r ) L(θ i, ϕ i ) cos θ i sin θ i dθdϕ, (2) k k R(θ i, ϕ i, θ r, ϕ r ) BRDF Lambert BRDF R d i(θ r, ϕ r ) = k 2π π 2 V (x, θ i, ϕ i )R d L(θ i, ϕ i ) cos θ i sin θ i dθdϕ (3) 2 θ i ϕ i N

i(u) = = V n (x)r d L n cos θ n S n L n, (4) i(u) u V n (x) n x R d L n k n θ n z n S n = V n (x)r d cos θ n L n S n N < = M L n. i = SL i(u 1 ) S 11 S 1N. =.. S.. mn i(u M ) S M1 S MN L 1.. L N (5) (5) [7], [8] (5) L n V n (x) cos θ n R d R d R d V n (x) u i (u) i (u) = R d L n cos θ n (6) (4) R d i(u) N i (u) = L n N j=1 L V n (x) cos θ n (7) j cos θ j R d (7) L n L n N j=1 L j cos θ j R d V n (x) cos θ n 3 4. RGB-D V n (x) cos θ n 3. 2 x E in (x) L E in (x) = L n cos θ n (8) (1) x E out (x) E out (x) = V n (x)l n cos θ n (9) V n (x) x n x u i in (u) E in (x) u i out (u) E out (x) E in (x) E out (x) i out (u) 4. i out (u) = i in (u) E out(x) E in (x) (1) RGB-D 3 V n (x) cos θ n V n (x) cos θ n 3 RGB RGB 3 3

2 V n (x) cos θ n L L 4. 1 3 RGB 4 (c obj, c bg, d obj, d bg ) 2 c, d RGB obj, bg diff c obj if c obj c bg > τ c c diff = (11) otherwise d obj if d obj d bg > τ d d diff = (12) otherwise τ d diff a obj = d diff (13) RGB RGB RGB RGB c diff d diff 3 3 a shadow = c diff ddiff (14) a obj a shadow d obj V n (x) cos θ n 4. 2 V n (x) cos θ n 3 V n (x) cos θ n V n (x), 3 x n 3 3 1 V n (x) = 2 V n (x) = 1 3 3 V n (x) 3 V n (x) = 1 3 V n (x) = 1

V n (x) = 1 cos θ n 3 x n θ n. 5.,, 5. 1 4 8 (4) (5) 4 Box 7 [6] Box Box V n (x) cos θ n Box RGB-D 5 2 RGB-D Microsoft Kinect < = θ < = 7 5 < = ϕ < 36 1 55 θ 7 5. 2 5 2 5 3 (Box, Duck2, Hemisphere) 7 (Combined) Box ( ) 5 2 RGB-D V n (x) V n (x) = 5. 3 Ground truth 5 3 Box Ground truth 5 Ground truth Real scene 2 Real scene 2 Box 2 Box Duck2 2 Box Duck2 Box RGB-D

4. V n (x) Hemisphere Box 2 Combined Duck2 Box Duck2 Duck2 V n (x) 5. 4 Box Duck2 2 1 Box Duck2 V n (x) 3(c) 2 3(a) (b) Hemisphere Box, Combined (Duck2 Hemisphere ) Hemisphere 6. RGB-D RGB-D V n (x) V n (x)., [9] [1] R. Azuma, A survey of augmented reality, Presence: Teleoperators and Virtual Environments, 6 (1997). [2], VRSJ, 4, 4, pp.623-63

5 (1999). [3] M. knecht, et al., Differential instant radiosity for mixed reality, in Proc. ISMAR (21). [4] P. Debevec, Rendering synthetic objects into real scenes: Bridging traditional and aimagebased graphics with global illumination and high dynamic range photography, in Proc. ACM SIGGRAPH, pp.189-198 (1998). [5] N. derek et al. Light Factorization for Mixed- Frequency Shadows in Augmented Reality, in Proc. ISMAR (211). [6], 41 SIG1(CVIM1) pp.31-4(2). [7] Gillm R.E, W. Murray M.H. Wright, Practical Optimization, Academic Press, London, UK(1981). [8] Coleman, R.F, Y. Li, A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables, SIAM Journal on Optimization, 6, 4, pp.14-158(1996). [9], CVIM 133 34 pp.21-28(22).