Report10.dvi

Similar documents
(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gmech08.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

LLG-R8.Nisus.pdf

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

総研大恒星進化概要.dvi

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

QMI_10.dvi

IA

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) ,

液晶の物理1:連続体理論(弾性,粘性)

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

X線-m.dvi

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

The Physics of Atmospheres CAPTER :

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

pdf

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

main.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


橡実験IIINMR.PDF

Z: Q: R: C: sin 6 5 ζ a, b

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

4‐E ) キュリー温度を利用した消磁:熱消磁

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

di-problem.dvi

第1章 微分方程式と近似解法

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

( )

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

untitled

sec13.dvi

ssp2_fixed.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

notes.dvi

振動と波動

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

TOP URL 1

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

PDF

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Gmech08.dvi

untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

keisoku01.dvi

30

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

untitled

2011de.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2 2 L 5 2. L L L L k.....

TOP URL 1

Z: Q: R: C:

gr09.dvi

Untitled

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


陦ィ邏・2

untitled

I

Mott散乱によるParity対称性の破れを検証


DVIOUT

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

untitled

untitled


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

構造と連続体の力学基礎

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

RIMS98R2.dvi


Transcription:

[76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer

= fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v c = t v ο = fl ce c ce fl -3 <ν<fl ce (3) -3 t ν > < ν <fl ce

-4 [μg] [TeV] [GeV] Hz ev -4 K E K u K = E m = m + p = m (4) E = m + p = (m + K) = m + mk + K ; ) p = K + mk (5) u = @E @p = p E ; u = p E = K + mk (K + m) (6) Lorentz factor fl = u = K + mk (K + m) = m + K m = + K m (7) 3 ν ν = 3 4 fl ce (8) ν = :39 ce = 7:588 fl 4 ψ B [μg] ψ B [μg] [Hz] ψ fl [GHz] ß 4 B :4 [μg] [GHz] (9) :4 [GHz] = [cm] Eq.(7) K = [TeV] ν = 5 7 [Hz]; hν = 3 [ev] K = [GeV] ν = 5 9 [Hz]; hν = 5 [ev] 3

- (=emissivity: ffl ff ν ) kev 3 cm 3 - ffl ff ν = dw(t;ν) dνdvdt ψ = 5 ße 6 = g ff T =ne 3mc 3 3k B m exp hν () ffl ff ν = = ß 3 3 3 = ß 3 3 3 = = 6:35 48 g ff = 6:35 48 g ff 3= ff 3 ( [kev]) = 6 [cm 6 ] :599898 6 [ev] = g ff [kev] 3 [cm 3 ] exp hν 3= i 3 ff 3 :599898 8 6 ] h() :98644544 :67646 3 9 7 = [kev] [kev] = = exp hν [ergsec Hz cm 3 ] g ff [kev] 3 [cm 3 ] exp hν [ergsec Hz cm 3 ] 3 [cm 3 ] exp hν 3 [cm 3 ] [erg sec Hz cm 3 ] () - kev 3 cm 3 Mpc 4

- (=bolometric luminosity: L) emissivity Z Z L = dw = dνdv dw = dνdv ffl ff ν dt dνdvdt ( 4 ) 3 = 6:35 48 3 ß 3:85677587 4 = Z V g ff dν exp [kev] 3 [cm 3 ] 4 3 ß [Mpc] 3 ( 4 = 6:35 48 3 ß = :8899 45 g ff = :89 45 g ff 3:85677587 4 3 ) hν [erg sec ] [kev] 4:356677 8 [kev] = V g ff [kev] 3 [cm 3 ] 4 [ergsec ] 3 ß [Mpc] 3 = V [kev] 3 [cm 3 ] 4 [erg sec ] 3 ß [Mpc] 3 = V [kev] 3 [cm 3 ] 4 [erg sec ] () 3 ß [Mpc] 3-3 = Λ kev = 3 [cm 3 ] [Mpc] = 3 4 [cm] [Mpc] [kev] [cm ] R [kev] x e x dx = :8 : -3 ffl ff ν hν hν = 3 [cm 3 ]; = [kev]; V = 4ß Z dw dν = dv = L = dn dt dνdvdt hν = :4684 53 [sec ] [kev] [Mpc] 3 =3 6:35 48 4 3 Z 6:666876 34 7 3 ß 3:85677587 4 x e x dx : (3) Z x e x dx = :8 : 5

g ff ß d = [Mpc] hν [kev] L = 4ßd I I = dn dtds = L 4ßd :4684 53 = = :7947 [cm 4ß 6 3:85677587 8 sec ] = :8 [cm sec ] (4) 3 RM RM Mpc L = Mpc = 3 cm 3 = kev 3-6

3- Mpc L = Mpc = [rad] = 8 6 [arcmin] ο 34 [arcmin] ß (b) ο 35 arcmin RM 35 ο arcmin RM RM 3-3- Rotation Measure RM = :8 Z d=[pc] ψ Bk ψ [μg] [cm 3 ] dl [rad m ] (5) ψ ψ RM = [rad m ] :8 Bk [μg] [cm 3 ] ψ L [pc] (6) L plasma (a) RM ο 4 rad m plasma B = 4 (:8) 3 6 = 4:9 [μg] 3-3 coherent length l = kpc l RM 3-3 random walk random walk l A hai = ; DA E = l ha + A + + A n i = ; E D E D(A + A + + A n ) = A + A + + A + A n A + A A 3 + E = n DA = nl = ff r ) ff = p L nl= l l = (Ll)= 7

Rotation Measure ψ ffirm = [rad m ] :8 ffib [μg] ψ [cm 3 ] ψ l [pc] r L l = :8 ψ ffib [μg] ψ [cm 3 ] (random) ffirm = 4 (:8) 3 3 6 = = :6[μG] ψ l L [pc] [pc] = (7) 4 Compton Scattering y Pγ, Pγ e - θe θ x Pe, 4- (ffl) (ffl ) 4- P μ fl ffl = c ; ffl ; ; c P μ = ffl fl; c ; ffl c cos ; ffl c sin ; (8) (9) P μ e = ( m e c ; ; ) () P μ = ( flm ec; flm e; e v cos e ; flm e v sin e ; ) () P μ fl + P μ e = P μ fl; + Pμ e; =) P μ e; = Pμ fl + P μ e P μ fl; () 8

P μ e; P e;μ = m e c = P μ flp flμ + P μ e P eμ + P μ fl; P fl;μ + P μ flp eμ P μ e P fl;μ P μ flp fl;μ = m e c + ( m e ffl) ( m e ffl ) fflffl c ( + cos ) ) ffl = ffl + ffl m e c ( cos ) (3) ffl = hν = hc= = + c ( cos ) ; c = h m e c = :463 [cm] = :463 [Å] (4) 5 K e - Pγ, K θ - θ e θ Pγ, θ Pγ Pγ 3 Compton Scattering K K (prime) K ffl fi m e c v = fic Lorentz factor fl = fi = x 5- K v t ο t + dt K dt obs dt dt obs 5- t obs; = t + n R c ; t obs; = t + n R c n v c (t t ) ; ) dt obs = t obs; t obs; = ( n fi) dt (5) 9

K R n/c t dt obs v n/c x dt 4 5- K dt K dt 5- Lorentz K K fl dt = fl dt ; fl (6) 5-3 dt ffl = fflfl ( fi cos ) ; ffl = ffl fl + fi cos (7) 5-3 Eq.(5),(6) dt obs = ( n fi) dt = h ; dt = dt = fl dt = h ; ) obs ffl ffl ffl = flh = fl ( n fi) ffl (8) dt Eq.(7) 5-4 Taylor

5-4 ffl = ffl + ffl ( cos ) = ffl ffl ( cos ) ο ffl ; * ffl fi m e c (9) m e c m e c K K y y z φ n θ x z φ n θ x 5 K n ; n n = cos ; sin cos ffi ; sin sin ffi n = cos ; sin cos ffi ; sin sin ffi (3) (3) n n = cos = cos cos + sin sin cos ffi cos ffi + sin sin sin ffi sin ffi = cos cos + sin sin cos ffi ffi ) cos =cos cos + sin sin cos ffi ffi (3) 5-5 ffl ο fl ( fi cos ) + fi cos ffl (33) = ß; = ffl = ffl ffl ffl 5-5 Eq.(7) Eq.(33) = ß; = ffl ο fl ( + fi) ffl (34)

5-6 Lorentz factor fl fl 4fl 5-6 ffl ffl ο fl ( + ) = 4fl (35) 5-7 fi fi ffl = fiffl 5-7 ffl = fl ( + fi) ffl = + fi ( + fi) ffl ffl = fiffl + O(fi 4 ) (36) 5-8 ffl = 3 4 ev Λ ffl ο kev Λ Lorentz factor 5-8 O( 8 ) fl fl Eq.(35) r 3 fl = r ffl ffl = 3 4 = 886:75 ο 3 3 (37) 5-9 ffl = 3 4 ev Λ kb T = 5 kev Λ 5-9 Λ Λ 5 kev fi m e = :5 3 kev Eq.(36) ψ = ψ = 3kB T ffl ο ffl = 3 4 3 5 3 Λ = :899 ο 4 ev m e c :5 6 (38)

6 Bessel Function J n (z) = ß Bessel Function cos (n' z sin ') d' (39) 6- n z J n(z) = J n (z) + J n+(z) (4) d dz J n(z) = J n (z) J n+(z) (4) 6- RHS of Eq.(4) = ß fcos ([n ] ' z sin ') + cos ([n + ] ' z sin ')g = ß n' z sin ' = ο dο = nd' z cos ' d'; = ß cos (n' z sin ') cos ' d' = n z ß = n z J n(z) + = LHS of Eq.(4) dο + nd' ) cos ' d' = ; z cos (n' z sin ') d' cos (n' z sin ') cos ' d' ' ß zß ο nß Z nß cos ο dο LHS of Eq.(4) = ß f sin (n' z sin ')g ( sin ') d' = ß = RHS of Eq.(4) fcos ([n ] ' z sin ') cos ([n + ] ' z sin ')g d' = J n (z) J n+(z) cos A + cos B = cos A + B cos A B ; cos A cos B = sin A + B sin A B 6- Bessel Function: J n (z) d dz y n (z) + z d dz y n(z) + ψ n y n (z) = (4) z 3

6- d dz J n (z) = d dz (J n (z) J n+(z)) = 4 (J n (z) J n (z)) 4 (J n(z) J n+(z)) = 4 (J n (z) J n (z) + J n+(z)) (43) d z z z dz J n(z) = z (J n (z) J n+(z)) = z (n ) (J n (z) + J n (z)) z (n + ) (J n(z) + J n+(z)) 4 n [(n + ) J n (z) + J n (z) (n ) J n+(z)] (44) J n (z) = z n (J n (z) + J n+(z)) = z n z z (n ) (J n (z) + J n (z)) + z n z (n + ) (J n(z) + J n+(z)) = 4n n [(n + ) J z n (z) + (n ) J n+(z)] + n J n(z) ψ z n =) J n n (z) = z n J z n(z) = 4n n [(n + ) J n (z) + (n ) J n+(z)] =) J n (z) = z n Φ n z Ψ f(n + ) J n (z) + (n ) J n+(z)g (45) Eq.(43),(44),(45) Eq.(4) + J n (z) + 4 4 (n + ) 4 4 (n + ) = 4 + 4 (n ) n 4 (n ) J n (z) + ψ J n+(z) + + 4 + 4 (n + ) n 4 (n + ) ψ n + d dz J n(z) = J n (z) J n+(z) = n z J n(z) J n+(z) J n+(z) = n =) ψ d + n J n (z) = J n+(z) dz z J n+(z) = n z J n (z) z J n(z) J n (z) 6-3 d dz J n(z) = J n (z) J n+(z) = J n (z) n z J n(z) + J n (z) = n ) =) ψ d dz + n z J n (z) = J n (z) ψ d + n + ψ d + n dz z dz z J n (z) = J n (z) Eq.(4) z J n(z) + J n+(z) J n (z) = = i n Z Z e iz sin ' in' d' (46) e iz cos '+in' d' (47) 4

6-3 J n (z) = ß = = = cos (n' z sin ') d' = Z e iz sin ' in' d' + e iz sin ' in' d' + e iz sin ' in' d' Z ß Z ß e iz sin ' in' + e iz sin '+in' e +iz sin ο inο dο; = ο + ; e +iz sin in d d' = ο ß ß e iz sin ' in' d' + Z ß e +iz sin ο inο dο J n (z) = = i n = i n = i n Z Z Z e iz sin ' in' d' = Z 3= ß= f 3=g ß= e iz cos ο+inο dο = i n 3= ψz Z e iz cos ο+inο dο = + = e iz cos '+in' d' = Z ß= e iz cos ο+inο i n ( dο) ; ; ' = ß ο; ' ψz + e iz cos '+in' d' = e iz cos ο+inο dο = + = Z 3= e iz cos ο+inο dο e iz cos '+in' d'; ο + = '; ο ß= 3= ο 3= ' ß= 6-4 e iz sin ' = +X n= J n (z)e +in' (48) 6-4 Fourier +X f (x) = f (x + n ) = n= +X =) f (') = e iz sin ' = e iz = sin('+) f (' + ) = c +in(= )x ; c n = n= ) e iz sin ' = Z c +in' ; c n = +X n= J n (z)e +in' f (x)e in(= )x dx: Z e iz sin ' in' d' = J n (z); * Eq.(46) 5