Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

Similar documents

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Miyazaki-3DForum dvi

14 2 5

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

28 Horizontal angle correction using straight line detection in an equirectangular image

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

proc.dvi

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

2 1 ( ) 2 ( ) i

IPSJ-CVIM

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

JFE.dvi

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-188 No /9/3 BRDF i

3 1 Table 1 1 Feature classification of frames included in a comic magazine Type A Type B Type C Others 81.5% 10.3% 5.0% 3.2% Fig. 1 A co

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

VRSJ-SIG-MR_okada_79dce8c8.pdf

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6


日本感性工学会論文誌

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

「霧」や「もや」などをクリアにする高速画像処理技術

it-ken_open.key

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

Vol.53 No (Mar. 2012) 1, 1,a) 1, 2 1 1, , Musical Interaction System Based on Stage Metaphor Seiko Myojin 1, 1,a

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

proc.dvi

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Sobel Canny i

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

IP IIS Construction of Overhead View Images by Estimating Intrinsic and Extrinsic Camera Parameters of Multiple Fish-Eye Cameras Shota Kas

013858,繊維学会誌ファイバー1月/報文-02-古金谷

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

3 3 3 Knecht (2-3fps) AR [3] 2. 2 Debevec High Dynamic Range( HDR) [4] HDR Derek [5] 2. 3 [6] 3. [6] x E(x) E(x) = 2π π 2 V (x, θ i, ϕ i )L(θ

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

, vol.43, no.2, pp.71 77, Simultaneous Measurement of Film Thickness and Surface Profile of Film-Covered Objects by Using White-Light Interfer

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

0801297,繊維学会ファイバ11月号/報文-01-青山

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

撮 影

塗装深み感の要因解析

LED CG [3] CG CG [4] [5] Weiss [6] I(p) R(p) L(p) I(p) = R(p) L(p) p p R(p) L(p) 2.2 [7] R(p) L I(p) = R(p) L (1) (1) R(p) L (1) P P G(n, p), n

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

STSNJ NL

IPSJ SIG Technical Report Vol.2010-CVIM-172 No /5/ Object Tracking Based on Generative Appearance Model 1. ( 1 ) ( 2 ) ( 3 ) 1 3) T

900 GPS GPS DGPS Differential GPS RTK-GPS Real Time Kinematic GPS 2) DGPS RTK-GPS GPS GPS Wi-Fi 3) RFID 4) M-CubITS 5) Wi-Fi PSP PlayStation Portable

Microsoft Word - toyoshima-deim2011.doc

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

,,.,.,,.,.,.,.,,.,..,,,, i

Fig. 2 Gaussian surfaces with different standard deviations

PSF SN 2 DFD PSF SN PSF PSF PSF 2 2 PSF 2 PSF PSF 2 3 PSF 4 DFD PSF PSF 3) DFD Levin 4) PSF DFD KL KL PSF DFD 2 Zhou 5) 2 DFD DFD DFD DFD Zhou 2

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Transcription:

Vol. 44 No. SIG 9(CVIM 7) July 2003, Robby T. Tan, 1 Estimating Illumination Position, Color and Surface Reflectance Properties from a Single Image Kenji Hara,, Robby T. Tan, Ko Nishino, Atsushi Nakazawa, and Katsushi Ikeuchi In this paper we propose a new method for estimating a position and color of a light source, as well as reflectance properties of a real object s surface, from a single image. We use the intensity of the diffuse and specular component for estimating the light source position, while the color distribution of the specular region is for estimating the light source color. The flow of this method is basically as follows: first, an initial position of the light source is estimated from a peak location of the specular region and a rough intensity value of the diffuse region. This diffuse-to-specular intensity value is also used to determine the initial values of the object reflectance properties. After having the initial values, using iterative fitting method, the light position and reflectance properties are estimated simultaneously. Finally, the estimation process of the light source color is based on the color distribution of the specular region. By knowing the light source position, color and the object reflectance properties, we can freely generate synthetic images under arbitrary light source conditions. 1. 1 Institute of Industrial Science, The University of Tokyo Department of Computer Science, Columbia University Presently with Fukuoka Industrial Technology Center Presently with Cybermedia Center, Osaka University 2 1 1),2) Ikeuchi Torrance-Sparrow 3) 4) Ramamoorthi 5) Tominaga Phong 1 6) 94

Vol. 44 No. SIG 9(CVIM 7) 95 1 1) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) 2 3 4 5 2. 2 2 (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1 Fig. 1 Outline of the overall algorithm. 1) 2) 1) 2 2.1 1 (1) 1 (a) 1 (b) (2) 1 (c) (3) (2)

96 July 2003 1 (d) (4) 1 (e) 1(f) (5) 1 (g) r-g 1 (h) 2.2 Torrance-Sparrow 3) [ ] i c = k d,c cos θ i + k s,c exp[ α2 cos θ r 2σ ] Lc 2 R (1) 2 4) c RGB i c L c R 2 k d,c k s,c σ θ i θ r α 2 2 (1) k d,c k s,c L c K d,c = k d,c L c (2) K s,c = k s,c L c (3) (1) I c = K d,c cos θ i + K s,c cos θ r exp[ α2 2σ 2 ] (4) I c = i c R 2 (5) (4) K d = [K d,r,k d,g,k d,b ] T K s =[K s,r,k s,g,k s,b ] T σ K d K s σ (2) (3) K d K s incident light surface normal bisector object surface 2 Fig. 2 Geometric model. view RGB RGB c RGB 2.2.1 N p L p V p L p N p V p L p = N p +(N p, V p )N p V p (6) N p V p 3 2 L p L 3 P L p t L = P + tl p (7) L t (4) 1 t f N j ( f(x 1 (t),,x Nj (t))= x j (t) 1 N j ) 2 x l (t) N j j=1 l=1 (8) N j x j (t)

Vol. 44 No. SIG 9(CVIM 7) 97 I (j) x j (t) = (9) cos(θ (j) i (t)) I (j) θ (j) i (t) j f (8) t f t t 1 = t t t 2 = t t 3 = t+ t 3 f(x 1 (t n ),,x Nj (t n )) (n =1, 2, 3) f t n t t =2mm t (7) L t K d 2 N j ( 2 E 1 (K d )= I (j) K d cos(θ (j) i (t ))) (10) j=1 K d N j / Nj Kd = I (j) cos(θ (j) i (t )) (11) j=1 j=1 2.2.2 N k k I (k) s = I (k) K d cos(θ (k) i (t )) (12) (4) 2 I s = K ] s exp [ α2 (13) cos θ r 2σ 2 Y = 1 σ 2 X +lnk s (14) 4) X = α2 2 (15) Y =lni s + ln cos θ r (16) N k (15) (16) X-Y (14) 2 (14) K s + σ + K s + σ + 2 E 2 (K s,σ) N k ( = I s (k) K s [ cos(θ (k) ) exp (α(k) (t )) 2 ] ) 2 2σ 2 k=1 N k K s = k=1 I (k) s r (17) (17) 1) 2) 1) σ K s / Nk [ α(k) (t ) 2 k=1 1 cos(θ r (k) ) exp 2) K s 2σ 2 ] (18) κ (n) = 1 (19) σ (n) N k ( κ (n+1) = κ (n) γ k=1 I (k) s K s cos(θ (k) r ) ] exp [ ) (α(k) (t )) 2 (κ (n) ) 2 2 Ks (α (k) (t )) 2 κ (n) 2 cos(θ (k) r ) ] exp [ (α(k) (t )) 2 (κ (n) ) 2 (20) 2 σ (n+1) = 1 (21) κ (n+1) 3 σ n γ γ γ =1.0 10 7 K s σ 8)

98 July 2003 N k I (k) d = I (k) K s [ cos(θ (k) ) exp (α(k) (t )) 2 ] 2(σ ) 2 r (22) 2 (17) (14) 2.3 Torrance-Sparrow 2 I c = w B (θ) S(λ)E(λ)R c (λ)dλ + w I (θ) E(λ)R c (λ)dλ (23) 2.2 c RGB I c RGB 1 2 λ [400, 700] nm w B (θ) w I (θ) R c (λ) S(λ) E(λ) (23) RGB (R, G, B)=w B (θ)(r, G, B) B +w I (θ)(r, G, B) I (24) r = R R + G + B, g = G R + G + B (25) (r, g) =w B (θ)(r, g) B + w I (θ)(r, g) I (26) RGB (25) r-g RGB Ψ c R c (λ) Ψ c = M(λ, T )R c (λ) dλ (27) M(λ) T Kelvin c 1 M(λ, T )= λ 5[ exp( c 2 λt ) 1] (28) c 1 =3.7418 10 16 Wm 2 c 2 =1.4388 10 2 mk r-g (26) (28) Planckian locus (1) T [T min,t max ] (28) T min =1, 000 T max =10, 000 =1 (2) rg (1) M(λ, T )(T min T T max ) RGB (27) rg (3) (2) rg r-g (26) (r,g ) T color constancy Finlayson 7) (26) 3 (a) Finlayson 3 (b) r-g r g Planckian locus (r, g) g =1 r

Vol. 44 No. SIG 9(CVIM 7) 99 Fig. 3 (a) (b) 3 (a) (b) Method for estimating illumination color: (a) conventional method, (b) proposed method. 4,700 Kelvin 3 (a) 3 (b) 1% 3. 3.1 ( K d, K s,σ) (θ i,θ r,α) R (4) 3.2 E(λ) T M(λ, T ) (23) I c = w B (θ) + w I (θ) S(λ)M(λ, T )R c (λ) dλ M(λ, T )R c (λ) dλ (29) M(λ, ) (28) (29) W = M(λ, T new )R c (λ) dλ M(λ, T )R c (λ) dλ WI c = w B (θ) +w I (θ) S(λ)M(λ, T )R c (λ) dλ M(λ, T )R c (λ) dλ (30) M(λ, T new )R c (λ) dλ M(λ, T new )R c (λ) dλ (31) T new I new c I new c = w B (θ) S(λ)M(λ, T new )R c (λ) dλ + w I (θ) M(λ, T new )R c (λ) dλ (32) (31) (32) R c (λ) δ(λ λ k ) 1 S(λ k )M(λ k T new )

100 July 2003 Table 1 1 Results of estimation. [mm] ( 400.42, 488.34, 797.65) ( 408.88, 493.59, 804.83) [Kelvin] 4,800 4,700 (K s,r,k s,g,k s,b ) (0.123, 0.0258, 0.249) (K d,r,k s,g,k d,b ) (0.494, 0.840, 0.576) σ 0.0702 WI c Ic new (33) δ( ) (1) 2.3 (3) T M(λ, T ) (28) (2) T new M(λ, T new ) (28) r-g 3.2 (2) (r new,g new ) T new (3) W (1) (2) (30) W (4) (33) I c (c = R, G, B) W 4. 4 (a) SONY DXC-9000 4 (b) 4 (c) 5 (a) 5 (b) 5 (c) 1 4 3 2 4 6 7 6 (a) 6 (b) 6 (a) 6 (c) 5,860 Kelvin 7 (a) 7 (b) 7 (c) 8 9 8 20 60 100

Vol. 44 No. SIG 9(CVIM 7) 101 32 0 Fig. 4 4 (a) (b) (c) Synthetic image: (a) real image, (b) virtual object image, (c) error map. 32 0 Fig. 5 5 (a) (b) (c) Synthetic image: (a) real image, (b) virtual object image, (c) error map. 32 0 6 (a) (b) (c) Fig. 6 Synthetic image: (a) real image, (b) virtual object image under new illumination position, (c) error map. 32 0 7 (a) (b) (c) Fig. 7 Synthetic image: (a) real image, (b) virtual object image under new illumination color, (c) error map. 9 8 z cm

102 July 2003 10 (a) 10 (b) 10 (c) 10 (a) 11 (a) 11 (b) 8 9 Fig. 8 Robustness analysis (surface reflection property). Fig. 9 Robustness analysis (illumination position). 10 (a) (b) (c) Fig. 10 Synthetic image: (a) real image, (b) virtual object image under the estimated illumination position and reflection parameters, (c) virtual object image under new illumination position. 11 (a) (b) (c) Fig. 11 Synthetic image: (a) white-balanced image, (b) virtual object image under the estimated illumination color, (c) virtual object image under new illumination color.

Vol. 44 No. SIG 9(CVIM 7) 103 11 (c) 5. 1 Lambertian Torrance-Sparrow NEDO 1) Boivin, S. and Gagalowicz, A.: Image-based rendering of diffuse, specular and glossy surfaces from a single image, Computer Graphics Proceedings, SIGGRAPH2001, pp.107 116 (2001). 2) 3 Vol.41, No.SIG 10(CVIM 1), pp.1 11 (2000). 3) Torrance, K.E. and Sparrow, E.M.: Theory of off-specular reflection from roughened surfaces, Journal of the Optical Society of America, Vol.57, pp.1105 1114 (1967). 4) Ikeuchi, K. and Sato, K.: Determining reflectance properties of an object using range and brightness images, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.13, No.11, pp.1139 1153 (1991). 5) Ramamoorthi, R. and Hanrahan, P.: A signal processing framework for inverse rendering, Computer Graphics Proceedings, SIG- GRAPH2001, pp.117 128 (2001). 6) Tominaga, S. and Tanaka, N.: Estimating reflection parameters from a single color image, IEEE Computer Graphics and Applications, Vol.20, No.5, pp.58 66 (2000). 7) Finlayson, G.D. and Schaefer, G.: Solving for color constancy using constrained dichromatic reflection model, Inter. J. Computer Vision, Vol.42, No.3, pp.127 144 (2001). 8) Chan, T.F. and Wong, C.K.: Convergence of the alternating minimization algorithm for blind deconvolution, Linear Algebra and its Applications, Vol.316, 1-3, Sep. 2000, pp.259 285 (2000). 9) http://radsite.lbl.gov/radiance/home.html ( 14 9 6 ) ( 15 3 28 ) 1988 1990 1992 1999 2001 4 IEEE Robby T. Tan 2001

104 July 2003 1997 1999 2002 2002 physics-based vision image-based rendering 1999 VSMM 2000 IEEE 1974 1997 1999 2001 2003 3 IEEE 1973 1978 MIT CMU 1996 ICCV-90 CVPR-91 AIJ-92-97 IEEE R&A -98 MIRU2000 11 OSA IEEE Fellow