7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Similar documents
( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

,,..,. 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

main.dvi

05Mar2001_tune.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

TOP URL 1

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

LLG-R8.Nisus.pdf

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

TOP URL 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


untitled

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

QMII_10.dvi

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

SO(2)

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

四変数基本対称式の解放

Microsoft Word - 11問題表紙(選択).docx

0406_total.pdf


4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

201711grade1ouyou.pdf

Z: Q: R: C: sin 6 5 ζ a, b

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

本文/目次(裏白)

chap9.dvi

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

chap10.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

I II III IV V

総研大恒星進化概要.dvi

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

untitled

量子力学 問題

τ τ

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

『共形場理論』

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Untitled

Mott散乱によるParity対称性の破れを検証

Note.tex 2008/09/19( )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Part () () Γ Part ,

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

KENZOU

meiji_resume_1.PDF

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

susy.dvi

Dynkin Serre Weyl

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

( )

構造と連続体の力学基礎


DVIOUT-fujin

( ) ( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

waseda2010a-jukaiki1-main.dvi

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

2000年度『数学展望 I』講義録

gr09.dvi

基礎数学I


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

プログラム

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Transcription:

7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α γ ] β δ (7.b) U (detu = ) U SU() SU() U U = e i σ θ (7.) ( D ) SU()( ) SU() SU() * ) (charge independence) SU() z K / π Σ * )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± = π ± iπ, π 0 = π (7.7) [ ] [ π π iπ π 0 ] π + τ π = = π + iπ π π π 0 L int = g ( ) N τn π = g [ p nπ + n pπ + + (p p n n)π 0] (7.9) (7.8) L int = g pn p nπ + + g np n pπ + + g pp p pπ 0 + g nn n nπ 0 (7.0) g pn : g np : g pp : g nn = : : : V pp = V nn = V pn 7.: V pp = V nn = V pn 7. π * ) N N = [ p n ] π gnγ 5 τn π

7 π 0 : V pp π 0 : V nn π 0 : V pn pn π ± : V pn np ( g g [() ()] = ) 7.(a) 4 ( g g [( ) ( )] = ) : 7.(b) 4 ( g g [() ( )] = ) : 7.(c) 4 ( g g [( ) ( )] = ) : 7.(d) V {pn} V pn pn +V pn np = V pp = V nn = g V (r) (7.) 4 V (r) π µ e µr r V {pn} n (pn) V [pn] V pn pn V pn np = 4 g V (r) (7.) ( =) ( =0) π π π π π < N,N,0 T [L INT L INT ] N,N,0 > < τ τ > V (r) (7.) 0 π < τ τ > / I (,0) I < τ τ > I I = [ (I + I ) I I ] = [I(I + ) I (I + ) I (I + )] = ( + ) ( + ) = 4 I= (7.4) 0 (0 + ) 4 = 4 I=0 I = 0 ( ) I = V (r) > 0 l = 0 l = I = 0 I=0 S=0 A + B(τ τ ) ( ρ ) [A + B(τ τ )][C + D(σ σ )] D

7 4 QCD p = uud,n = udd, π + = ud,π 0 = ( uu + dd)/, π = du) pn π 0,π ± π 7.: p n p n ( ) 7. SU() 7.. u d (s- ) S ( ) (a) π + P K + + Σ S 0 0 + - K + π + π 0 Σ π + n + 0 0-0 0 (c) K + P Ω + K + + K 0 S - 0 - + + Ω Ξ 0 + +π - - 0 Ξ 0 Λ 0 + π 0 - - 0 Λ 0 π P π 0 γ + γ - 0 0 0 0 0

7 5 Q B ( ) Q = I + B + S = I + Y (7.5) Y (hypercharge) ((u,d) πn () ) (u,d,s) SU() % 0% SU() SU(n) n = 4,5 s (.4GeV) SU(4) (flavor) (u,d,s) SU() SU() QCD SU() SU(N) U detu = N N ( U = exp i N θ i F i ), Tr[F i ] = 0, (7.6a) i= [F i, F j ] = i f i jk F k (7.6b) ( A ) F i N N θ i N F i SU(N) f i jk f i jk SU() F i = σ i SU() F i = { λ i ; i = 8} 7.. SU() (q i = u,d,s) SU() SU() (u,d,s)

7 6 u ψ = d = s q q q ψ ψ = Uψ = exp 0 0 = q i e i, e = 0, e =, e = 0 [ i i ] λ i θ i ψ 0 0 (7.7a) (7.7b) q i q i = U i jq j, q i (q i ) q i = q j U j i (7.7c) λ i [ ] 0 0 0 0 i τ i 0 λ i (i =,,) =, λ 4 = 0 0 0, λ 5 = 0 0 0, 0 0 0 0 i 0 0 (7.8a) 0 0 0 0 0 λ 6 = 0 0, λ 7 = 0 0 i, λ 8 = 0 0 0 0 0 0 0 i 0 0 0 (7.8b) [ λi, λ ] j { λi, λ j = i f i jk λ k } = δ i j + id i jk λ k (7.9a) (7.9b) Tr[λ i ] = 0, Tr[λ i λ j ] = δ i j (7.9c) f i jk SU() SU() f i jk,d i jk i jk 7. 7.: SU() f = f 47 = f 46 = f 57 = f 45 = f 56 = f 67 = / f 458 = f 678 = / d 8 = d 8 = d 8 = d 888 = / d 46 = d 57 = d 56 = d 44 = / d 47 = d 66 = d 77 = / d 448 = d 558 = d 668 = d 778 = /( ) 7.: I I Y Q B u + d s 0 0 SU() λ i Y Y Q B S Q = I + Y, Y = B + S (7.0) (u,d,s) (I,I ) Y Q B

7 7 7.. q i q j / q i q j q k ψψ = q i q i = q i q i SU() η (uu + dd + ss) (7.) SU() * ) / Φ i j = q i q j P i j = q i q j (uu dd ss) du su δi jtr[φ i j] ud (dd ss uu) sd us ds (ss uu dd) (7.) SU() (octet) = 8 (7.) I,I,Y 0 * 4) 7.: (a) J P = 0 (b) J P = π 0 P i + η 6 π + K + j = π π0 + η 6 K 0 K K 0 η (7.4a) π = ud, π + = du, π 0 uu dd =, K = us, K + = su, K 0 = sd, K 0 = ds, (7.4b) η = uu + dd ss 6 (7.4c) 7. * ) * 4) )

7 8 7..4 / q i q j q k T i j = q i q j T i j = (qi q j + q j q i ) + (qi q j q j q i ) = S i j + A i j (7.5) ( 7..) = 6 (7.6) (I,Y ) 7.4: 7.5: 7.. (7.5) q j (7.6) = 8 (7.7) A i j q k 8 (7.6) 6 = 8 0 (7.8) = A 8 MA 8 MS 0 S (7.9) (A) 0 (S) 8 I Y (MA) (MS) - / + 8 / + 0 ( 7.47.5)

7 9 I Y ( 7.6) ud (I = I ( u) + I(d),Y = (Y (u) +Y (d)) I Y ( 7.6(c)) q i,q j 7.7 I = Y = 0 ( 7.7 ) 7.6: u,d,s (I, Y ) = (/,/), ( /, /), (0, /) (a) (b) (u,d,s) (c) u d ud 7.7: 8,0 7. 0 ++ = uuu,ω = sss / l = 0 * 5) SU() xx () * 5)

7 0 ()π 0 γγ () - (Drell-Yan) (P + P ll + X) ()() qq (4)W eν, µ ν, τν, ud, cs (W tb m W = 8GeV,m top = 75Gev ) BR(W eν) = /5 = 0% BR(W eν) = /9 % 7.8: R = σ(ee ) σ(ee µµ) (5)R = σ(e e + hadron) σ(e e + µ µ + ) e + e + q i + q i (7.0) ee - Q i R = σ(ee ) σ(ee µµ) = σ(ee q iq i ) σ(ee µµ) = Q i (7.) i [ ( Q ) ( ) ] + = 5 s GeV i = 5 + ( ) = 7 s 0GeV (7.a) R (S GeV ) b (S 0GeV)

7 7.4 SU(6) 7.4. S * 6) SU(6) SU(6) (u, u, d, d, s, s ) (7.) 6 6 (,/) SU() 6 6 = 5 = (,0) (,) (8,0) (8,) (7.4) (0, ) ( ) 6 6 6 = 0 A 70 M A 70 M S 56 S (7.5) A= MA= MS= S= 56 * 7) 56 = (8,/) (0,/) (7.6) / / (/) + SU() / 8 SU(6) 7.4. SU(6) 8 L=0 p > uud uu, >=,,0 >= ( + ),, >= (7.7) / /, = ( + ) = [ ( + ) ] (7.8) 6 * 6) P D * 7) 0,70 P,D

7 p > uud[ ( + ) ] + cyclic 8 [uud( ) + udu( ) + duu( )] (7.9) < p p >= 7.4. (ud du)u( ) (7.40) 7.4. SU(6) (7.9) ud p >= uud { ( + ) } (7.4) 6 ) ( = 6 µ p = µ u + µ u µ d (7.4) ) ( = 6 µ p = µ u µ u + µ d (7.4) µ p = (µ u µ d ) + µ d = (4µ u µ d ) (7.44) µ n = (4µ d µ u ) (7.45) SU(6) m u = m d µ d = µ u / µ n /µ p = / (-0.685) SU(6) (7.44) / / m u,m d,m s 7.4. 7. µ i = q i e/m i m u = 8MeV, m d = MeV, m s = 50MeV (7.46) m u m d m p /, m s m u m Λ m p

7 7.: SU(6) p (4µ u µ d )/ INPUT.7984786 ± (6) n ( µ u + 4µ d )/ INPUT.90475 ± (45) Λ 0 µ s INPUT 0.6 ± 0.004 Σ + (4µ u µ s )/.67.49 ± 0.0 Σ 0 [(µ u + µ d ) µ s ]/ 0.79? Σ 0 Λ 0 (µ u µ d )/ -.6.6 ± 0.08 Σ (4µ d µ s )/ -.09.56 ± 0.04 Ξ 0 ( µ u + 4µ s )/ -.4.5 ± 0.04 Ξ ( µ d + 4µ s )/ -0.49 0.675 ± 0.0 Ω µ s -.84.08 ± 0.5 e/m p