リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

Similar documents
$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980


Li Yorke 1) 2) 3) Lorenz 4) 1960 Li Yorke Ruelle Takens ) 1970 Lorenz ) Birkhoff ) Smale 8) 9) 1

sakigake1.dvi

Takens / / 1989/1/1 2009/9/ /1/1 2009/9/ /1/1 2009/9/30,,, i

untitled

,.,.,,. [15],.,.,,., , 1., , 1., 1,., 1,,., 1. i

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

lecture_rev3

⑥宮脇論 123~229○/宮脇先生

広報東京都3月号

082_rev2_utf8.pdf

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,


1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

2

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

A comparative study of the team strengths calculated by mathematical and statistical methods and points and winning rate of the Tokyo Big6 Baseball Le



100 SDAM SDAM Windows2000/XP 4) SDAM TIN ESDA K G G GWR SDAM GUI

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

004139 医用画像‐27‐3/★追悼文‐27‐3‐0 松本様


& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

わが国企業による資金調達方法の選択問題

2009年度 東京薬科大学 薬学部 授業計画

人文学部研究年報12号.indb

untitled

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)


自殺の経済社会的要因に関する調査研究報告書

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

IR0036_62-3.indb


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

untitled

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

4703ALL01

202

国際流動性に関する財政的側面について

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

産業・企業レベルデータで見た日本の経済成長.pdf

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

[2] , [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

% 95% 2002, 2004, Dunkel 1986, p.100 1



Transcription:

1768 2011 150-162 150 : Recurrence plots: Beyond visualization of time series Yoshito Hirata Institute of Industrial Science, The University of Tokyo voshito@sat. t.u\cdot tokvo.ac.ip 1 1. 1987 (Eckmann et al. (1987); Marwan et al. (2007)) 2 $2$ $M$ $d$ $M$ $i$ $x(i)\in M$ $R(i,j)=\{\begin{array}{l}1, d(x(i),x(j))<r(i,j)0, otherwise.\end{array}$ $R(i,j)=1$ $(i,j)$ $R(i,j)=0$ $(i,j)$ $r(i,j)$ Zbi lut and $b^{l}ebber$ (1992) $r(i,j)=r$ Eckmann et al, (1987) $r(i, j)$ $i$ $k$

$0$ 50 $#_{l}^{y_{r^{1}}}i$ $\grave$ 151 $0$ $0$ 100 50 100 50 $0$ 60 100 $0$ 50 100 $0$ 50 100 $\not\in \#_{\iota^{ }}$ $\Re,\hslash_{\langle}J$ $*t_{\wedge} $ 1: ( ) ( ) $M$ $d$ 1 2 $d(x(i),x(j))= x(i)-x(j) $ $($ $1)_{\text{ }}$ 2 $M$ $n\iota$ $x_{k}(i)$ $x(i)$ $k$ $d$

152 $d(x(\dagger),x(j))=j\leqq\sqrt{\sum_{k\overline{-}1}^{t1l}(x_{k}(i)-x_{k}(j))-}$ $\circ$ 2 (Hirata et al. (2008) ;1 Thiel et al. $(2004a))$ $\circ$ (Faure and (1998) :Thiel et al. $(2004b)$ ) 2 3 4 5 6 7 2. 1992 (Webber and Zbilut, 1994; Marwan et al., 2002; Marwan et al., 2009) 3 1 (Webber and Zbilut, $1992)$ $2$ $($Marwan et al., $2002)$ $3$ (Marwan et al., 2009) $l$ $D(l)=\{(i, j),$ $f=1,2,$ $\ldots,$ $n-1,$ $j=i+1,l+2,\ldots,$ $n (1-R(i-1,j-1))(1-R(l+l, j+t)) \prod_{k\underline{-}0}^{l-1}r(i+k, j+k)=1\}$ 4 1 (DET) $\sum l D(l) $ $DET= \frac{l\geq 2}{\sum_{l\geq 1}l D(l) }$

$ $ A 153 $ $ A DET $L$ 2 $\sum l D(l) $ $L= \frac{/\geq 1}{\sum_{\prime\geq 1} D(l) }$ $L$ 3 $L_{mas}= \max\{l D(l)\neq\emptyset\}$ $L_{1,\iota_{t}\tau x}$ $\emptyset$. 4 $p(l)= D(l) / \sum_{/\geq 1} D(l) $ $ENTR=- \sum_{l\geq 1}p(l)\log p(l)$ 3. 1 3.1 (Hirata and Aihara, $\circ$ 2011) $p$ $p^{2}$ 2

154 $\mathfrak{l}2_{(l}$ 2 2 lyt$d= \frac{1}{2}(n-1)(n-2)$ $p^{2\text{ }}$ $n_{d}$ $m_{d}$ 2 2 $m_{d}$ $m_{d}p^{2\text{ }}$ $m_{c},p^{2}(1-p^{2})$ $z_{d}= \frac{n_{d}-m_{d}p^{2}}{\sqrt{m_{d}p^{2}(1-p^{2})}}$ $2_{/1}$ 1 $0$ $Z_{d}$ 1 $P$ $0.58$ $p$ $0.001$ 3.2 Devaney (Devaney, l989) (Hirata and Aihara, $2010a$ ) Devaney Hirata and Aihara (2010b) 1

155 4. (Casdagli, 1997; Stark, 1999; Hegger et al., 2000) $i$ $1997)_{\text{ }}$ $($Casdagl, Hirata et al. (2008) Tanio et al. (2009) Lorenz 63 Henon 2 Lorenz 63 Henon 10 3 Lorenz 63 Hirata et al. (2008) 2 Lorenz 63

$0$ 5 156 10 15 20 2: Lorenz 63 ( ) ( ) 25 20 15 10 5 $0$ $0$ 5 10 15 20 25 3 :Lorenz 63 Henon

157 5. 2 1 $($Zbilut et al., 1998; $2002)_{\text{ }}$ Marwan and Kurths, $M$ $i$ 2 $x(i),y(i)\in M$ $C(i,j)=\{\begin{array}{l}1, d(x(i),y(j))<r(i,j)0, otherwise.\end{array}$ 2 $\circ$ 1 (Romano et al., 2004) 2 2 2 $x_{1}(i)\in M_{1}$, $x_{2}(i)\in M_{2}$ $R_{1}(j,j),$ $R_{2}(i,j)$ $J(i,j)=R_{1}(i,j)R_{2}(l, j)$ 2 Hirata and Aihara (2010b) 3 2 3 6. (Victor and Purpura, 1997; Hirata and Aihara, 2009; Suzuki et al., 2010) (Suzuki et al., 2010)

158 2 ( 4 ) 3 1 ( ) Victor and Purpura(1997) (Suzuki et al., 2010) time 4: 2

$\cross$ 159 $k$ 5 :Rossler ( ) ( ) 5 Rossler 6 2 3. 2 Devaney consistent

M. 160 $0$ $\}$ $t\mathfrak{d}$ 0.. $\infty$ $\Re$ 6:Rossler ( ) ( ) 7 3 1 4 5 6 (B) 21700249 C. Casdagli: Recurrence plots revisited, Physica $D,$ $108,12-44$ (1997). R. L. Devaney: An Introduction to Chaotic Dynamical Systems, $Addison\cdot Wesley$, Reading, Massachusetts, 1989. $J.\cdot P$. Eckmann, S. Oliffson Kamphorst, D. Ruelle: Recurrence plots of dynamical systems, Europhysics Letters, 5, 973-977 (1987). P. Faure, H. Korn: A new method to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals, Physica $D,$ $122,265-279$ (1998). R. Hegger, H. Kantz, L. Matassini, T. Schreiber: Coping with nonstationarity by

Y. 161 overembedding, Physical Review Letters, 84, 4092-4095 (2000). Y. Hirata, S. Horai, K. Aihara: Reproduction of distance matrices from recurrence plots and its applications, European Physical Journal-Special Topics, 164, (2008). $13\cdot 22$ Y. Hirata, K. Aihara: Representing spike trains using constant sampling intervals, Journal of Neuroscience Methods, 183, $277\cdot 286$ (2009). Hirata, K. Aihara: Devaney s chaos on recurrence plots, Physical Review $E,$ $82$, 036209 (2010a). M. C. Romano, M. Thiel, J. Kurths, W. von Bloh: Multivariate recurrence plots, Physics Letters $A,$ $330,214-223$ (2004). J. Stark: Delay embeddings for forced systems. I. Deterministic forcing, Journal of Nonlinear Science, 9, $255\cdot 332$ (1999). S. Suzuki, Y. Hirata, K. Aihara: Definition of distance for marked point process data and its application to recurrence $plot\cdot based$ analysis of exchange tick data of foreign currencies, International Journal of Bifurcation and Chaos, 20, $3699\cdot 3708$ (2010). 1 M. Tanio, Y. Hirata, H. Suzuki: Reconstruction of driving forces through recurrence plots, Physics Letters $A,$ $373,2031-2040$ (2009). M. Thiel, M. C. Romano, J. Kurths: How much information is contained in a recurrence plot?, Physics Letters $A,$ $380,343\cdot 349(2004a)$. M. Thiel, M. C. Romano, P. L. Read, J. Kurths: Estimation of dynamical invariants without embedding by recurrence plots, Chaos, 14, 234-243 (2004b). J. Victor, K. $Pui\sim pura:metric\cdot space$ analysis of spike trains: theory, algorithms and

162 $\cdot$ application, Network 8, 127 164 (1997). C. L. Webber Jr., J. P. Zbilut: Dynamical assessment ofphysiological systems and states using recurrence plot strategies, Journal ofapplied Physiology, 76, (1994). $965\cdot 973$ J. P. Zbilut, C. L. Webber Jr.: Embeddings and delays as derived from quantification of recurrence plots, Physics Letters $A,$ $171,199-203$ (1992). J. P. Zbilut, A. Giuliani, C. L. Webber Jr.: Detecting deterministic signals in exceptionally noisy environments using $cross\cdot recurrence$ quantification, Physics Letters $A,$ $246,122-128$ (1998).