no35.dvi

Similar documents

- II

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

. p.1/15

A A p.1/16

function2.pdf

高等学校学習指導要領

高等学校学習指導要領

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

i

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

(2000 )

1

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

J1-a.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 I

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

70 : 20 : A B (20 ) (30 ) 50 1

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0


2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

fx-260A_Users Guide_J

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2014 S hara/lectures/lectures-j.html r 1 S phone: ,


2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

di-problem.dvi

Chap10.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

04.dvi

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

Chap11.dvi

I

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

DVIOUT


数学の基礎訓練I

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

Chap9.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 I p2/30

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

「産業上利用することができる発明」の審査の運用指針(案)

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)

基礎数学I

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

pdf

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

Transcription:

p.16 1 sin x, cos x, tan x a x a, a>0, a 1 log a x a III 2 II

2 III III [3, p.36] [6] 2 [3, p.16] sin x sin x lim =1 ( ) [3, p.42] x 0 x ( ) sin x e [3, p.42] III [3, p.42] 3 3.1 5 8 *1 [5, pp.48 49] sin x, cos x, tan x *1 5 8 306 305303 301 313 312 309308

sin x, cos x, tan x (1) (sin x) sin x =cosx lim =1 x 0 x (sin x) sin(x + h) sin x 1 cos h sin h = lim =sinx lim +cosx lim =cosx sin x 1 cos h lim =1lim =0 x 0 x { ( (2) (cos x) = sin x (cos x) = sin x + π )} ( 2 (cos x) = cos x + π ) ( x + π ) ( = cos x + π ) = sin x 2 2 2 ( π ) [5] cos x =sin 2 x (3) (tan x) = 1 ( ) sin x cos 2 x (tan x) = = (sin x) cos sin x(cos x) cos x cos 2 = 1 x cos 2 x sin 2 x +cos 2 x =1 3 sin x, cos x, tan x 1 2 sin x, cos x, tan x *2 3 3.2 3.2.1 cos x, sin x, tan x (1) (cos x) = sin x (cos x) = lim h 0 cos(x + h) cos x h = *2 3 P 3 6

cos h 1 sin h cos x lim sin x lim = sin x (2) (sin x) =cosx(1) { ( π )} ( π ) (sin x) = cos 2 x = sin 2 x ( 1) = cos x (3) (tan x) = 1 cos 2 3.1(1), (2) x (1) (3) 3.1 sin x, cos x *3 3.2.2 tan x 2 cos x, tan x, sin x sin x, tan x, cos x 2 (1) (cos x) = sin x 3.2.1 (2) (tan x) = 1 cos 2 x (cos x) = sin x 1+tan 2 x = 1 cos 2 x 2tanx (tan x) (tan x) (tan x) (x n ) = nx n 1 n (x n ) = nx n 1 n *4 [3, p.41] (1) 2 2 sin x cos 3 ( sin x) = x cos 2 tan x tan x = x cos x 2tanx (tan x) = 2 cos 2 x tan x (tan x) (tan x) = 1 cos 2 x (2) tan 2 x = 1 cos2 x cos 2 x tan x = cos( π 2 x) cos x (sin x) =cosx cos x, tan x, sin x (3) (sin x) =cosx sin x =tanxcos x (1), (2) 3.1 *3 1 x y f(x) =g(y) 2 f(x),g(x)[1, p.165] sin x cos x tan x cot x(= 1/ tan x) sec x(= 1/ cos x) csc x(= 1/ sin x) 1 *4

(2) (tan x) 1+ 1 tan 2 x = 1 sin 2 x 3.2.3 tan x 1 tan x, cos x, sin x tan x, sin x, cos x 2 (1) (tan x) = 1 cos 2 x (tan tan(x + h) tan x x) = lim = tan h tan 2 x tan h tan h lim = lim (1 tan x tan h) 1 tan 2 x 1 tan x tan h = 1 cos 2 x lim sin h =1 tan h lim =1 (2) (cos x) = sin x 3.2.2 1+tan 2 x = 1 cos 2 x 1 (1) 2tanx cos 2 x 2 cos 3 x (cos x) 3.2.2 (cos x) (cos x) 2tanx 1 cos 2 x = 2 cos 3 (cos x) x (cos x) (cos x) = sin x (3) (sin x) =cosx 3.2.2 (3) 3.2.2 sin x 1+ 1 tan 2 x = 1 sin 2 x 3.3 3 tan x 2 (cos x) tan x 4 a a>0 a 1e Napier

4.1 3.1 5 8 log a x,logx, a x, e x (1) (log a x) = 1 Napier e = lim x log a (1 + x) 1 x x 0 ( log lim a (x + h) log a x = lim log a 1+ h h 0 x ) 1 h = lim log a (1 + t) 1 1 tx = t 0 x log a (2) (log x) = 1 (1) a = e x (3) (a x ) = a x log a y = a x log y = x log a y y =loga(log x) = 1 x y y = a x log a (4) (e x ) = e x (3) a = e 1 4 1 2 301(2), (1), (4), (3) (2) (2) log a x = log x (1) [5] log a (2), (1), (4), (3) (2) (1) (2) (4) (1) (3) 309(1) (2), (2) (1) (3) (4) (3) (1)

4 2 III 4 *5 (1) (4) 4.2 4.1 4.14 (1) (log a x) = 1 x log a, (2) (log x) = 1 x, (3) (a x ) = a x log a, (4)(e x ) = e x 4.2.1 (2) log x (3) a x 4.1 (1) log a x (3) a x (1) log a x (4) e x (2) log x (4) e x (1) log a x (4) e x y = e x a log a y =log a e x = x log a e y y log a =log a e (log a x) =1/x log a y y = y log a log a e = y (e x ) = e x 4.2.2 (2) log x (1) log a x 4.1 (4) e x (3) a x X α = Y α log Y X a x = e x log a (a x ) =(e x log a ) = e x log a log a = a x log a *5 4 4 P 4 =24

X α = Y α log Y X 4.2.3 (1) log a x (3) a x 4.1 (2) log x (4) e x (3) a x (1) log a x (4) e x (2) log x 4.2.1(1) log a x (4) e x (2) log x (3) a x (1) (4) f(x) =e x, g(x) =logx = log a x f(x) g(x) log a e ( ) g 1 (x) = f (g(x)) loga x 1 = log a e exp(log x) = 1 x *6 (log a x) = 1 (2) log x (3) x log e a x f(x) g(x) (4) e x (1) log a x (3) a x (2) log x 4.3 4 2 2 4 2 1 2 4 *6 exp(x) =e x

2 2 4.1309 (1) (2) (1) (3) (1) (4) (1) 1 y = f(x) a y = a f(x) e y = e f(x) (4) e x (1) log a x xlog a 1 y =log a x e y e y =(x 1/ log a ) = log a α (x α ) = αx α 1 (2) (log x) =1/x 4. 4 Napier Napier e = lim (1 + x) 1 x x 0 Napier a h 1 e lim =1 a

1 5 *7 1 [6] [2] [4, p.39] *8 [6] 3 2016 2 IIA, B 45 [2] *7 Cantor *8 John Perry(1850-1920) 20

[1] 1993 [2] 49 pp.497 500 2016 [3] 2009 [4] 2010 [5] 2002 [6] PISA 2004