f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

Similar documents
DVIOUT

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

mugensho.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

応力とひずみ.ppt

A

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

29

Gmech08.dvi

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

. p.1/14

Chap11.dvi

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

i

Gmech08.dvi

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

v er.1/ c /(21)

画像工学特論

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


高等学校学習指導要領

高等学校学習指導要領

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

untitled

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

曲面のパラメタ表示と接線ベクトル

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

A

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

DE-resume

Morse ( ) 2014

) Binary Cubic Forms / 25

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Acrobat Distiller, Job 128

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Fr

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Untitled

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

pdf

. p.1/11

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


( ) Loewner SLE 13 February


, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

重力方向に基づくコントローラの向き決定方法

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

プリント

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) ( )


d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

KENZOU

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Transcription:

B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi (x 1,...,x n ) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi (x 1,...,x n ) [ ] x (x 0,y 0 ) y (x 0,y 0 ) f (x 0,y 0 ) ( ) B p.1/14

B p.2/14

[ ] f(x,y) x(t),y(t) f(x(t),y(t)) df dt = x dx dt + y dy dt B p.3/14

[ ] f(x,y) x(t),y(t) f(x(t),y(t)) df dt = x dx dt + y dy dt [ ] f(x(t),y(t)) = f(x(t 0 ),y(t 0 )) + f x (x(t 0 ),y(t 0 )) (x(t) x(t 0 )) +f y (x(t 0 ),y(t 0 )) (y(t) y(t 0 )) + R (x(t),y(t)) B p.3/14

[ ] f(x,y) x(t),y(t) f(x(t),y(t)) df dt = x dx dt + y dy dt [ ] f(x(t),y(t)) = f(x(t 0 ),y(t 0 )) + f x (x(t 0 ),y(t 0 )) (x(t) x(t 0 )) +f y (x(t 0 ),y(t 0 )) (y(t) y(t 0 )) + R (x(t),y(t)) f(x(t),y(t)) f(x(t 0 ),y(t 0 )) t t 0 =f x (x(t 0 ),y(t 0 )) x(t) x(t 0) t t 0 +f y (x(t 0 ),y(t 0 )) y(t) y(t 0) t t 0 + R(x(t),y(t)) t t 0 B p.3/14

[ ] f(x,y) x(t),y(t) f(x(t),y(t)) df dt = x dx dt + y dy dt [ ] f(x(t),y(t)) = f(x(t 0 ),y(t 0 )) + f x (x(t 0 ),y(t 0 )) (x(t) x(t 0 )) +f y (x(t 0 ),y(t 0 )) (y(t) y(t 0 )) + R (x(t),y(t)) f(x(t),y(t)) f(x(t 0 ),y(t 0 )) t t 0 =f x (x(t 0 ),y(t 0 )) x(t) x(t 0) t t 0 +f y (x(t 0 ),y(t 0 )) y(t) y(t 0) R(x(t),y(t)) R(x(t),y(t)) t t 0 = {x(t) x(t 2 0 )} 2 +{y(t) y(t 0 )} R(x(t),y(t)) {x(t) x(t 0 )} 2 +{y(t) y(t 0 )} 2 t t 0 + R(x(t),y(t)) t t 0 {x(t) x(t 0 )} 2 +{y(t) y(t 0 )} 2 t t 0 = {x (t 0 )(t t 0 )+R 1 (t)} 2 +{y (t 0 )(t t 0 )+R 2 (t)} 2 t t 0 B p.3/14

[ ] f(x 1,...,x n ) x 1 (t),...,x n (t) f(x 1 (t),...,x n (t)) f = f x1 x 1 + + f xn x n B p.4/14

[ ] f(x 1,...,x n ) x 1 (t),...,x n (t) f(x 1 (t),...,x n (t)) f = f x1 x 1 + + f xn x n [ ] f(x,y) x(u,v),y(u,v) f(x(u,v),y(u,v)) u = x x u + y y u, v = x x v + y y v B p.4/14

[ ] f(x 1,...,x n ) x 1 (t),...,x n (t) f(x 1 (t),...,x n (t)) f = f x1 x 1 + + f xn x n [ ] f(x,y) x(u,v),y(u,v) f(x(u,v),y(u,v)) u = x x u + y y u, v = x x v + y y v f(x 1,...,x m ) x 1 (y 1,...,y n ),...,x m (y 1,...,y n ) f(x 1 (y 1,...,y n ),...,x m (y 1,...,y n )) = x 1 + + x m y i x 1 y i x m y i B p.4/14

B p.5/14

[ ] f(x) x(u,v) f(x(u,v)) u = df dx x u, v = df dx x v B p.6/14

[ ] f(x) x(u,v) f(x(u,v)) u = df dx x u, v = df dx x v f(x) x(y 1,...,y n ) f(x(y 1,...,y n )) = df y i dx x y i B p.6/14

B p.7/14

[ ] n = α β (x,y) f(x,y) f(x + tα,y + tβ) f(x,y) D n f(x,y) = lim t 0 t B p.8/14

[ ] n = α β (x,y) f(x,y) f(x + tα,y + tβ) f(x,y) D n f(x,y) = lim t 0 t = α x + β y = (f x,f y ) α β B p.8/14

[ ] n = α β (x,y) f(x,y) f(x + tα,y + tβ) f(x,y) D n f(x,y) = lim t 0 t = α x + β y = (f x,f y ) α β f(x,y) n n B p.8/14

[ ] n = α β (x,y) f(x,y) f(x + tα,y + tβ) f(x,y) D n f(x,y) = lim t 0 t = α x + β y = (f x,f y ) α β f(x,y) n n (f x,f y ) gradf B p.8/14

[ ] n = α β (x,y) f(x,y) f(x + tα,y + tβ) f(x,y) D n f(x,y) = lim t 0 t = α x + β y = (f x,f y ) α β f(x,y) n n (f x,f y ) gradf D n f(x,y) f(x,y) n gradf B p.8/14

Dnf(x,y) (x,y) n B p.9/14

B p.10/14

[ ] f(x,y) f x (x,y),f y (x,y) f 2 f x = 2 x x, 2 f y x = y x, 2 f x y = x y, 2 f y = 2 y y B p.11/14

[ ] f(x,y) f x (x,y),f y (x,y) f 2 f x = 2 x x, 2 f y x = y x, 2 f x y = x y, 2 f y = 2 y f xx,f xy,f yx,f yy ( f xy,f yx x,y ) y B p.11/14

[ ] f(x,y) f x (x,y),f y (x,y) f 2 f x = 2 x x, 2 f y x = y x, 2 f x y = x y, 2 f y = 2 y f xx,f xy,f yx,f yy ( f xy,f yx x,y ) [ ] f xy f yx f xy = f yx y B p.11/14

[ ] f(x,y) f x (x,y),f y (x,y) f 2 f x = 2 x x, 2 f y x = y x, 2 f x y = x y, 2 f y = 2 y f xx,f xy,f yx,f yy ( f xy,f yx x,y ) [ ] f xy f yx f xy = f yx y B p.11/14

[ ] f(x,y) f x (x,y),f y (x,y) f 2 f x = 2 x x, 2 f y x = y x, 2 f x y = x y, 2 f y = 2 y f xx,f xy,f yx,f yy ( f xy,f yx x,y ) [ ] f xy f yx f xy = f yx f(x 1,...,x n ) k f (= f xi1 x x ik x ik ) ( ) i1 y B p.11/14

B p.12/14

[ ] x = r cosθ,y = r sin θ ( ) f(x,y) f = 2 f x + 2 f 2 y = 2 f 2 r + 1 2 r r + 1 2 f r 2 θ 2 B p.13/14

[ ] x = r cosθ,y = r sin θ ( ) f(x,y) f = 2 f x + 2 f 2 y = 2 f 2 r + 1 2 r r + 1 2 f r 2 θ 2 x = r cosθ,y = r sin θ,z = z ( ) f(x,y,z) f = 2 f x + 2 f 2 y + 2 f 2 z = 2 f 2 r + 1 2 r r + 1 2 f r 2 θ + 2 f 2 z 2 B p.13/14

[ ] x = r cosθ,y = r sin θ ( ) f(x,y) f = 2 f x + 2 f 2 y = 2 f 2 r + 1 2 r r + 1 2 f r 2 θ 2 x = r cosθ,y = r sin θ,z = z ( ) f(x,y,z) f = 2 f x + 2 f 2 y + 2 f 2 z = 2 f 2 r + 1 2 r r + 1 2 f r 2 θ + 2 f 2 z 2 x = r sin θ cos ϕ,y = r sin θ sin ϕ,z = r cosθ ( ) f(x,y,z) f = 1 ( r 2 ) + 1 ( sin θ ) + 1 2 f r 2 r r r 2 sin θ θ θ r 2 sin 2 θ ϕ 2 B p.13/14

[ ] x = r cosθ,y = r sin θ ( ) f(x,y) f = 2 f x + 2 f 2 y = 2 f 2 r + 1 2 r r + 1 2 f r 2 θ 2 x = r cosθ,y = r sin θ,z = z ( ) f(x,y,z) f = 2 f x + 2 f 2 y + 2 f 2 z = 2 f 2 r + 1 2 r r + 1 2 f r 2 θ + 2 f 2 z 2 x = r sin θ cos ϕ,y = r sin θ sin ϕ,z = r cosθ ( ) f(x,y,z) f = 1 ( r 2 ) + 1 ( sin θ ) + 1 2 f r 2 r r r 2 sin θ θ θ r 2 sin 2 θ ϕ 2 Laplacian B p.13/14

195 198 206 ( A) B p.14/14