( ) ( )

Similar documents
K E N Z OU

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

II 1 II 2012 II Gauss-Bonnet II

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)




x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II 2006

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

TOP URL 1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Untitled

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

08-Note2-web

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

v er.1/ c /(21)

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +



.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k


i 18 2H 2 + O 2 2H 2 + ( ) 3K

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


曲面のパラメタ表示と接線ベクトル

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

プログラム

i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

pdf

KENZOU

73

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

Gmech08.dvi

Note.tex 2008/09/19( )

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

Microsoft Word - 11問題表紙(選択).docx

第1章 微分方程式と近似解法

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D


Gmech08.dvi


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

untitled

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

b3e2003.dvi

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


all.dvi


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

untitled

Fubini

Fr

II 2 II

TOP URL 1

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

05Mar2001_tune.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

meiji_resume_1.PDF

all.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

Part () () Γ Part ,


Transcription:

20 21 2 8

1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1

1 2 2 1 2 1 0 2 0 3 0 4 0 2

2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t)) γ(t) γ(t) = (x(t) y(t)) γ(t) = (ẋ(t) ẏ(t)) (ẋ = dx dt ẏ = dy dt ) t 22 γ(t)(a t b) s(t) = t a γ(u) du γ(t) [a t] γ 0 ds = γ(t) 0 dt [a b] γ(t) l s(t) [a b] [0 l] t = t(s) : [0 l] [a b] t(s) s γ(s) := γ(t(s)) (0 s l) s s 3

s ( ) γ(s) = dγ ds = dγ dt dt ds = γ(t) γ(t) 1 t 1 γ(s) = (x(s) y(s)) e(s) := γ(s) = ( x(s) ý(s)) γ(s) n(s) := ( ý(s) x(s)) e(s) e(s) γ(s) 23 γ(s) = (x(s) y(s)) 1 γ(s) = γ(s) 2 = 1 ( ) s 2γ (s) γ (s) = 0 γ (s) γ (s) γ (s) n(s) κ(s) γ(s) γ (s) = κ(s)n(s) κ(s) γ(s) 4

24 3 2 x(u v) y(u v) z(u v) (u v) 3 (x y z) (u v) uv 2 3 p(u v) = x(u v) y(u v) z(u v) p u = p u = (x u y u z u ) p v = p v = (x v y v z v ) p(u v) (u v) uv (u v) p u (u v) p v (u v) x(u v) y(u v) z(u v) p(u v) p u (u v) p v (u v) p(u v) p u (u v) p v (u v) p(u v) sp u (u v) tp v (u v) s t p u (u v) p v (u v) ν := p u(u v) p v (u v) p u (u v) p v (u v) ( ) ν = (a b c) (x o y o z o ) a(x x o ) b(y y o ) c(z z o ) = 0 25 p(u v) 2 p(u v) p(u u v v) s 2 u v : ( s) 2 = p(u u v v) p(u v) 2 5

p u (u v) p u (u v) 3 (u v) p u p u p u p v p v p v ds 2 = du 2 dudv dv 2 ( ) ( ) ( ) ds 2 du = du dv dv ( ) p(u v) p u p v 2 = (p u p u )(p v p v ) (p u p v ) 2 = 2 d 2 dudv 26 p ( u v) II = dp dν = (p u du p v dv) (ν u du ν v dv) ν = ν(u v) p(u v) II = ( p u ν u )du 2 ( p u ν v p v ν u )dudv ( p v ν v )dv 2 p u p v ν p u ν = 0 p v ν = 0 u v p uu ν = p u ν u p vv ν = p v ν v p uv ν = p u ν v = p v ν u 6

II = du 2 2 dudv dv 2 p u ν u = p uu ν p u ν v = p v ν u = p uv ν p v ν v = p vv ν 2 p(u 0 v 0 ) f (u 0 v 0 ) II p(u 0 v 0 ) f (u 0 v 0 ) II (u(s) v(s)) p(s) = p(u(s) v(s)) κ dp/ds = 1 p (s) p(s) p (s) p(s) p(u v) p (s) p(u v) p (s) = k g k n k g k n k n e k n = κ n e κ n κ n = κ n e e = (p k g ) e = p e = p e du = (p u ds p dv v ds ) (e du u ds e dv v ds ) = du du dv 2 du ds ds ds ds dv dv ds ds κ n (s) p(s) p (s) 1 p 0 = p(u 0 v 0 ) ω = ξp u (u 0 v 0 ) ηp v (u 0 v 0 ) 7

II(ω ω) = ξ 2 2 ξη η 2 κ n (s) = II(p (s) p (s)) II(ω ω) ω p 0 ω 2 = ξ 2 2 ξη η 2 = 1 II(ω ω) (ξ η) (0 0) η 2 η 2 λ = ξ2 2 ξη ξ 2 2 ξη ξ 2 2 ξη η 2 λ( ξ 2 2 ξη η 2 ) = 0 ξ η λ/ ξ = λ/ η = 0 ( λ )ξ ( λ )η = 0 ( λ )ξ ( λ )η = 0 (ξ η) 0 λ ( 2 )λ 2 ( 2 )λ 2 = 0 λ = κ 1 κ 2 κ 1 κ 2 = 2 2 1 2 (κ 1 κ 2 ) = 2 2( 2 ) κ 1 κ 2 = 1 2 (κ 1 κ 2 ) 27 0 0 8

28 ( ) x 2 a 2 y2 b 2 z2 c 2 = 1 x = a cos u cos v y = b cos u sin v z = c sin u p(u v) = (a cos u cos v b cos u sin v c sin u) p u = ( a sin u cos v b sin u sin v c cos u) p v = ( a cos u sin v b cos u cos v 0) p uu = ( a cos u cos v b cos u sin v c sin u) p uv = (a sin u sin v b sin u cos v 0) p vv = ( a cos u cos v b cos u sin v 0) e = 1 ( bc cos u cos v ca cos u sin v ab sin u) = b 2 c 2 cos 2 u cos 2 v c 2 a 2 cos 2 u sin 2 v a 2 b 2 sin 2 u a2 b 2 c 2 a 2 sin 2 u cos 2 v b 2 sin 2 u sin 2 v c 2 cos 2 u (a 2 b 2 ) sin u cos u sin v cos v a 2 cos 2 u sin 2 v b 2 cos 2 u cos 2 v abc 0 a2 b 2 c 2 cos 2 u abc[(a2 b 2 c 2 ) (a 2 cos 2 u cos 2 v b 2 cos 2 u sin 2 v c 2 sin 2 u)] 2 3 9

3 31 xz xz z z xz z (x z) = (f(u) g(u)) z (x y z) = (f(u) cos v f(u) sin v g(u)) 31 p(u v) = (f(u) cos v f(u) sin v g(u)) p u p u = (f (u) cos v f (u) sin v g (u)) (f (u) cos v f (u) sin v g (u)) = f (u) 2 g (u) 2 p u p v = (f (u) cos v f (u) sin v g (u)) ( f(u) sin v f (u) cos v 0) = 0 p v p v = ( f(u) sin v f (u) cos v 0) ( f(u) sin v f (u) cos v 0) = f(u) 2 10

e e = p u p v p u p v e = f(u)( g (u) cos v g (u)f(u) sin v f (u)) f(u) f (u) 2 g (u) 2 = ( g (u) cos v g (u)f(u) sin v f (u)) f (u) 2 g (u) 2 p uu e = (f (u) cos v f (u) sin v g (u)) ( g (u) cos v g (u)f(u) sin v f (u)) f (u) 2 g (u) 2 = f (u)g (u) f (u)g (u) f (u) 2 g (u) 2 p uv e = ( f (u) sin v f (u) cos v 0) ( g (u) cos v g (u)f(u) sin v f (u)) f (u) 2 g (u) 2 = 0 p vv e = ( f (u) cos v f (u) sin v 0) ( g (u) cos v g (u)f(u) sin v f (u)) f (u) 2 g (u) 2 = f(u)g (u) f (u) 2 g (u) 2 2 2 = g (u)(f (u)g (u) g (u)f (u)) f(u)(f (u) 2 g (u) 2 ) 2 2 2( 2 ) = 1 2 ( g (u) f(u)(f (u) 2 g (u) 2 ) 1/2 f (u)g (u) f (u)g (u) (f (u) 2 g (u) 2 ) 3/2 ) u f (u) 2 g (u) 2 = 1 11

f (u)f (u) g (u)g (u) = 0 (f (u)g (u) f (u)g (u))g (u) = f (u)g (u)g (u) f (u)g (u)g (u) f (u)f (u)f (u) f (u)(1 f (u)f (u)) = f (u) g (u)(f (u)g (u) g (u)f (u)) f(u)(f (u) 2 g (u) 2 ) 2 = f (u) f(u) 1 2 ( g (u) f(u)(f (u) 2 g (u) 2 ) 1/2 f (u)g (u) f (u)g (u) (f (u) 2 g (u) 2 ) 3/2 ) = g (u) 2f(u) f (u) 2g (u) 32 ( ) z x2 a 2 z2 = 1 a 0 b 0 b2 (x z) = (f(u) g(u)) = (a cos u b sin u)) p(u v) = (f(u) cos v f(u) sin v g(u)) p(u v) p(u v) = (a cos u cos v a cos u sin v b sin u) 12

= = g (u)(f (u)g (u) g (u)f (u)) f(u)(f (u) 2 g (u) 2 ) 2 b 2 (a 2 sin 2 u b 2 cos 2 u) 2 g (u) f(u)(f (u) 2 g (u) 2 ) f (u)g (u) f (u)g (u) 1/2 (f (u) 2 g (u) 2 ) 3/2 b ab a(a 2 sin 2 u b 2 cos 2 u) 1/2 (a 2 sin 2 u b 2 cos 2 u) 3/2 b c (b = a) (c = b) 4 0 0 41 0 41 0 0 = 0 u f (u) f(u) = 0 f (u) = 0 f (u) 2 g (u) 2 = 1 x = f(u) = au b z = g(u) = ±u 1 a 2 + c (a b c a 1) 13

g(u) = u 1 a 2 +c π/2 g(u) = u 1 a 2 +c g(u) = u 1 a 2 c g(u) = u 1 a 2 + c z = g(u) = u 1 a 2 a = 0 (x z) = (f(u) g(u)) = (b u) 0 a 1 (x z) = (f(u) g(u)) = (au + b u 1 a 2 ) a = 1 (x z) = (f(u) g(u)) = (u + b 0) 42 42 0 p(u v) c cp(u v) 1/c 2 1/c p(u v) = cp(u v) p u = cp u p v = cp v p p c 2 p p (u v) p uu = cp uu p p c 1 1 = 1 f = f x = f(u) = α cos u β sin u(α β ) = a cos(u δ)(a = α 2 β 2 δ = arctan( β α )) f(u) = a cos u a 0 (f ) 2 (g ) 2 = 1 z = g(u) = ± u 0 1 a 2 sin 2 tdt 14

0 z = g(u) = u 0 1 a 2 sin 2 tdt a = 1 = 1 f = f x = f(u) = ae u be u (a b ) (f ) 2 (g ) 2 = 1 z = g(u) = ± u 0 1 (ae u be u ) 2 dt 0 u z = 1 (ae u be u ) 2 dt 0 a = 0 b = 1 u x(u) = e u z(u) = 1 (e 2t )dt 0 y y z z x x K = 1 a < 1 K = 1 a = 1 4 1 4 2 43 0 0 = 0 u g (u) 2f(u) f (u) 2g (u) = 0 15

f(u)f (u) = g (u) 2 = 1 f (u) 2 (f(u)f (u)) = f (u) 2 f(u)f (u) = 1 1 2 (f(u)2 ) = f(u)f (u) = u c d f(u) 2 = u 2 2cu d f(u) = u 2 2cu d g (u) = ± 1 f (u) 2 d c = ± 2 u 2 2cu d c = 0 d = a 2 (a 0) z = g(u) = ± x = f(u) = u 2 a 2 u u 0 a t 2 a = ±a u 2 sinh 1 a x = a cosh z a ( ) z 0 0 0 y x z 16

44 0 35 4y 25 3 15 2 05 1 2 4 6 8 10 12 x xy (r θ) r = r(θ) = a (a 0 0 ɛ 1) 1 ɛ cos θ 1 ɛ γ(θ) := r(θ)(cos θ sin θ) = γ(θ) γ a sin θ (θ) = ( (1 + ɛ cos θ) 2 ɛ + a cos θ (1 + ɛ cos θ )2 ξ cos ξ = ɛ sin θ sin ξ = 1 + ɛ cos θ 1 + 2ɛ cos t + ɛ 2 1 + 2ɛ cos t + ɛ 2 x 1 θ x s(θ) γ(θ) s(θ) = θ 0 a 1 + 2ɛ cos t + ɛ 2 (1 + ɛ cos t) 2 dt (x y) = (x(θ) y(θ)) = (s(θ) + r(θ) cos ξ(θ) r(θ) sin ξ(θ)) (x(θ) y(θ)) x 1 2 ( x y x y x (x 2 y 2 ) 3/2 y(x 2 + y 2 ) ) 1/2 17

= 1 + 2ɛ cos θ + ɛ 2 = ɛ sin θ (cos ξ) = ɛ2 sin 2 θ 2 ɛ cos θ 3 x = a(1 + ɛ cos θ) 3 x = ( aɛ sin θ) 3 3a(1 + ɛ cos θ) 2 y = aɛ sin θ 3 6 y = (aɛ cos θ) 3 3(aɛ sin θ) 2 6 1 ɛ2 2a (ɛ 1) 5 6 1 1995 2 2002 3 2000 18