Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Similar documents
Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

meiji_resume_1.PDF

II 2 II

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

TOP URL 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

notekiso1_09.dvi

KENZOU

Gmech08.dvi

mugensho.dvi

Gmech08.dvi

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

TOP URL 1

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


振動と波動

Gmech08.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Untitled

08-Note2-web

30

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

dynamics-solution2.dvi

all.dvi

画像工学特論

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

all.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

i


QMII_10.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

II 1 II 2012 II Gauss-Bonnet II

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

phs.dvi

Korteweg-de Vries

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


2011de.dvi

B ver B

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

Chap11.dvi

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.


80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

重力方向に基づくコントローラの向き決定方法

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

( ) ,

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

sec13.dvi

Report10.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

III,..

( )

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Transcription:

[2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 *1 ε i jk 2 = 6 ; ε ikm ε jkm = 2δ i j ; ε i jk ε nmk = δ in δ jm δ im δ jn ; e i e j = ε i jk e k ; e i e j = δ i j 5 2-1 div rot = 2-1 f f = {e i i } { } f j e j = ei e j i f j = εi jk e k i f j = e k k ε i jk e k i f j = εi jk ik f j =, ik = ki, ε i jk = ε k ji 2-2 rot grad = 2-2 f f = e j j f = e i i e j j f = e i e j i j f = e k ε i jk i j f =, i j = ji, ε i jk = ε jik 3 3-1 A = A 2 A 6 *1

3-1 A = e i i { e j j ek A k } = e i e j e k i j A k = e i ε jkl e l i j A k = ε jkl ε ilm e m i j A k = ε jkl ε iml e m i j A k = δ ji δ km δ jm δ ki em i j A k = δ jm δ ki e m i j A k δ ji δ km e m i j A k = e m mk A k ii A k e k = A 2 A 3-2 A B C = B C A = C A B 7 3-2 A B C = A i e i { B j e j Ck e k } = A i e i B j C k ε jkl e l = Ai B j C k ε jkl δ il = A i B j C k ε i jk = A i B j C k ε ki j = A i B j C k ε kil δ jl = B j e j Ck A i ε kil e l = B j e j {Ck e k A i e i } = B C A = A i B j C k ε jki = A i B j C k ε jkl δ il = C k e k A i B j ε i jl e l = Ck e k {A i e i } B j e j = C A B 3-3 A B = B A A B 8 3-3 A B = e i i [ A j e j Bk e k ] = e i i A j B k ε jkl e l = ε jkl δ il i A j B k = εi jk i A j B k = ε i jk B k i A j + ε i jk A j i B k = B k e k e k ε i jk i A j A j e j e j ε ik j i B k = B A A B 4 4-1 A B C = A C B A B C 9

4-1 LHS = Ai B j C k { ei e j e k } = Ai B j C k { ei ε jkl e l } = Ai B j C k ε jkl ε ilm e m = A i B j C k ε jkl ε iml e m = A i B j C k δ ji δ km δ jm δ ki em = A i B j C k δ jm δ ki e m A i B j C k δ ji δ km e m = A i C i B m e m A i B i C m e m = A C B A B C = RHS 5 5-1 A B A = 1 5-1 A B A = A i e i { B j e j Ak e k } = A i e i B j A k ε jkl e l = Ai B j A k ε jkl δ il = A i A k B j ε i jk =, A i A k = A k A i, ε i jk = ε k ji 6 z B E = m q 6-1 6-1 r = x, y, z m d2 r dt = q E + 1 dr 2 dt B 11 m d2 x dt 2 m d2 y dt 2 = q m d2 z dt 2 = q = q dy dt B z dz dt B y = qb dy 12 dt dz dt B x dx dt B z = qb dx 13 dt dx dt B y dy dt B x = 14

6-2 v z t = = 6-2 Eq.12,13 v x + qb 2 qb v x =, v x t = C 1 os m m t Eq.12 v x t zt Eq.14 xt = C 1 sin qb m t + C 2 yt = C 1 os qb m t + C 3 zt = C 4 C 1, C 1, C 2, C 3.C 4 = Const qb qb r = xt, yt, zt = C 1 sin m t + C 2, C 1 os m t + C 3, C 4 v = v x t, v y t, v z t qb qb = C 1 os m t, C 1 sin m t, 15 16 6-3 q B 6-3 y C 3 B q> C 1 y C 3 B q< C 1 z B Bz C 2 Bz x C 2 Bz x q> q< 1 Eq.15,16 q B q B

7 gx 7-1 dx f xδx 1 17 7-1 dx f xδx 1 = = f 1 dx f X + 1δX ; x 1 = X, dx = dx, x + X + 7-2 dx f xδ3x 18 7-2 dx f xδ3x = = f 3 dx 3 f X/3δX ; 3x = X, 3dx = dx, x + X + 7-3 dx f xδ 3x 19 7-3 dx f xδ 3x = = f 3 dx 3 f X/3δX ; 3x = X, 3dx = dx, x + X + 7-4 dx f xδx 2 1 2

7-4 dx f xδx 2 1 = = = 1 ɛ 1+ɛ 1 ɛ ɛ 2 +2ɛ + ɛ 2 2ɛ ɛ 2 +2ɛ ɛ 2 2ɛ 1+ɛ 1 ɛ 1+ɛ + + + 1 ɛ 1+ɛ 1 ɛ dx f xδx 2 1 + dx f X + 1 δx 2 X + 1 = 1 { f 1 + f +1} 2 +1+ɛ dx f X + 1 δx 2 X + 1 +1 ɛ + 1+ɛ dx f xδx 2 1 ; ɛ > dx f xδx 2 1 ; x 2 1 = X, 2xdx = dx, x <, ; x 2 1 = X, 2xdx = dx, x >, x 1 ɛ 1 + ɛ X ɛ 2 + 2ɛ ɛ 2 2ɛ x 1 ɛ 1 + ɛ X ɛ 2 2ɛ ɛ 2 + 2ɛ 7-5 dx f xδ gx 21 7-5 dy dy dx f xδ gx = g δy f gx ; gx = y, x dx = g x, = f x i g x i y = x = x i 7 δax = 1 δx a 22 δx 2 a 2 = 1 {δx + a + δx a} 23 2 a δ gx = i δx x i g x i ; gx i = 24 8 gx gx = x = x n x n N x = x n n = 1, 2,... N gx = 8-1 dx f xδ gx 25

8-1 Eq.24 dx f xδ gx = = N n=1 dx f x f x n g x n N n=1 δx x n g x n = dx N n=1 f xδx x n g x n 9 φ φ r, t = 4πρ e r, t 26 D Alambertian = 2 1 2 2 t 2 27 9-1 G r, t = δ 3 rδt 28 G Green Green φ r, t φ r, t = 4π G r r, t t ρ e r, t d 3 rdt 29 9-1 = D, t Eq.28 D, Gr, t = δ 3 rδt t Fourier ˆD ik, iω Ĝ k, ω = 1 2π 4 1 ˆD ik, iω = 2π4 Ĝ k, ω 3 Eq.26 Fourier ˆφ k, ω = 4π ˆρ e k, ω ˆD ik, iω

Eq.3 xt, yt x yt = ˆφ k, ω = 4π2π 4 Ĝ k, ω ˆρ e k, ω 31 xtyt t dt = 2π ˆxωŷωe iωt Eq.31 Fourier LHS = F 1 [ ˆφ k, ω ] = φ r, t RHS = F 1 [ 4π2π 4 Ĝ k, ω ˆρ e k, ω ] = 4πF 1 [ 2π 4 Ĝ k, ω ˆρ e k, ω ] = 4π [ ρ e G r, t ] = 4π G r r, t t ρ e r, t d 3 rdt φ r, t Eq.29 1 G r, t = δ 3 rδt 32 Green G r, t, for t =, for t < 33 Green Green 1-a Green Fourier G r, t = δ 3 rδt = 1 2π 4 d 3 k Ĝ k, ω e iωt+ik r 34 k k d 3 k e iωt+ik r 35 Ĝ k, ω = 2 2π 4 1 ω 2 2 k 2 36 1-a + LHS = G r, t = d 3 k 2 1 2 Ĝ k, ω e iωt+ik r 2 t 2 Ĝ = d 3 k +ik 2 iω2 k, ω e iωt+ik r = ω2 2 k 2 2 RHS = δ 3 rδt = 1 2π 4 2 d 3 k Ĝ k, ω e iωt+ik r d 3 k e iωt+ik r

Ĝ k, ω = 2 2π 4 1 ω 2 2 k 2 1-b a G r, t = 2 2π 4 d 3 1 k +ik r 37 ω 2 2 k 2 ω Green ω = k ω = +k Green 1-b Eq.37 G r, t = 2 2π 4 d 3 k 1 ω 2 2 k 2 +ik r = 2 2π 4 d 3 k e ik r ω 2 2 k 2 ω 38 ω 2 k 2 2 ω-plane C 1 -k R= ω o +k C 2 2 ω plane Green t < exp [ iωt] = exp [+iω t ] = exp +i t R[ω] exp t I[ω]

I[ω] > R = ω + Eq.38 C 1 ω 2 k 2 = 2 e+iω t ω 2 k 2 2 e+iω t ω 2 k 2 2 = G r, t < = 39 t exp iωt = exp iω t = exp i t R[ω] exp + t I[ω] Eq.38 C 2 ω 2 k 2 = 2 ω 2 k 2 2 ω = ±k ω 2 k 2 = 2 e ikt = 2πi [R k + R+k] = 2πi ω 2 k 2 2 2k + e ikt = 2π 2k k sinkt ω k k 3 θ k k 1 k ψ 2 3 k = k 1, k 2, k 3 = k, θ, ψ

G r, t = 2 2π 4 = 1 2π 2 ir = 2π 2 1 2r = 2π 2 1 2r = 1 2π 2 2r = 1 δ 4π t r r [{ [ { d 3 k 2π sinktdk } k sinkt π θ π 2π e ik r = 2π 3 e ikr os θ dθ = 1 2π 2 ir dk [ e +ikt r/ e +ikt+r/ + e ikt r/ e ikt+r/] dk e +ikt r/ + dk e +ikt r/ ; t Green } { dk e +ik t r/ dk e +ikt+r/ ] G ret r, t = 1 4π G ret r, t < = = 1 4πr δ t r r [ δ k 2 sin θ dkdθdψ [sinkt 1k ] eikr os θ dk e ikr e +ikr sinkt dk e +ikt+r/ + t r δ t + r ] }] dk e +ik t+r/ ; k = k Green ω = ±k t <, t Green t > t Green G adv r, t = 1 4π G adv r, t > = δ t + r Eq.32 r = t = r, t t t < G r, t r 11 t dt u n 11-1 dt dt = [1 1 n u ] dt 4

dt n 11-1 u t=t Q n P P t=t +dt O 4 P O t 1 t 1 = t + OP P O t 2 t 2 = t + dt + OP = t + dt + OP QP = t + dt + dt dt = t 2 t 1 = [1 1 ] n u dt OP n udt Eq.4