,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

Similar documents
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

数学概論I

tnbp59-21_Web:P2/ky132379509610002944

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

研修コーナー

パーキンソン病治療ガイドライン2002

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

v er.1/ c /(21)

日本内科学会雑誌第102巻第4号

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

第90回日本感染症学会学術講演会抄録(I)

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Ł\”ƒ-2005

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

プリント

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b


³ÎΨÏÀ

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

1 I

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

201711grade1ouyou.pdf

Note.tex 2008/09/19( )

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

基礎数学I

本文/目次(裏白)

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル



1 (1) (2)

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a


2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

nsg02-13/ky045059301600033210

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

Chap11.dvi

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

untitled

「産業上利用することができる発明」の審査の運用指針(案)


2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


2000年度『数学展望 I』講義録

第10章 アイソパラメトリック要素

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

ohpmain.dvi

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

newmain.dvi

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

Microsoft Word - 表紙.docx

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

日本内科学会雑誌第97巻第7号


IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (


(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

I II III IV V

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) Loewner SLE 13 February

日本内科学会雑誌第98巻第4号

抄録/抄録1    (1)V

koji07-02.dvi

1 c Koichi Suga, ISBN

: , 2.0, 3.0, 2.0, (%) ( 2.

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

koji07-01.dvi

2007年08月号 022416/0812 会告

ε

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

04.dvi

FX ) 2

FX自己アフリエイトマニュアル

Transcription:

6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +, ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,.,. 6.1.1 f(x, y), :, () : = 1 + 2 + 3 + (6.1.2) f(x, y) = α j χ j (x, y) (6.1.3) j=1., α j,. χ j (x, y) j., f(x, y) f (x, y), f(x, y). 6.1.1 6.1.1 f(x, y)., f(x, y), f(x, y) 3

(6.1.3), (6.1.2),.,., R = R {± }., f(x, y) R. f(x, y)., ( ) = {(x, y) ; f(x, y) = }, ( ) f(x, y). 6.1.2 R 2., f(x, y), (i), (ii) : (i) ( ) B, µ(( )) = 0. (ii) {f (x, y); }, \( ) lim f (x, y) = f(x, y), (x, y) \( ) (6.1.4). 6.1.2 (ii) (iii) : (iii) \( ) K ε > 0, 0, 0, f (x, y) f(x, y) < ε, ((x, y) K) (6.1.5), f(x, y), f(x, y). 4

6.1.2 (6.1.4),,,, f (x, y) f(x, y). 6.1.3 (6.1.1), i δ i = sup{d(p, q); p, q i } (6.1.6), d(p, q) R 2 2 p q., δ = δ() = max δ i (6.1.7) 1 i<,, lim δ() = 0 (6.1.8) 6.1.4,, 0, lim δ() = 0 (6.1.9) 0., 0, δ() 0, 0,.,. 6.1.1 R 2 f(x, y) f(x, y) 2.1.1 5

6.1.1 R 2 f g,., (1) f + g. (2) f g. (3) fg. (4) f/g.,, δ > 0, g δ. (5) αf., α. (6) f. (7) sup(f, g). (8) inf(f, g). (9) f + = sup(f, 0). (10) f = inf(f, 0). 6.1.2 R 2 {f n }, 0, f \ 0., f. 6.1.2 [0, 1] [0, 1] f(x, y), (x, y) 1, (x, y) 0., f(x, y), (x, y) x y 6.2 2, 2. R 2, 2 (R 2, B, µ)., 2. 6

R 2, f(x, y) 2,. (1) f(x, y),, f(x, y) () : = 1 + 2 + 3 + (6.2.1) f(x, y) = α j χ j (x, y) (6.2.2) j=1., α j R, (j 1)., f(x, y) 2, f(x, y)dxdy = α j µ( j ) (6.2.3),,. (6.2.3), f(x, y) (6.2.2)., (6.2.3) 2. j=1 (2) f(x, y), f(x, y), f(x, y), \( ) {f (x, y); }, 7

, I = lim f (x, y)dxdy (6.2.4), f(x, y) 2, I = f(x, y)dxdy (6.2.5), I f(x, y) {f (x, y); }. {f (x, y); } f (x, y)., f(x, y) 2.,,,,,., f(x, y) 2., 2 (6.2.5) I f(x, y) {f (x, y); }, f(x, y) 2., (6.2.5) I f(x, y) {f (x, y); }, f(x, y) 2. (6.2.4), f(x, y) 2. (6.2.4), f(x, y). 8

, f(x, y), f(x, y). 6.2.1, x, y.,, I = f(x, y)dxdy.,., R 2, f(x, y), () : = 1 + 2 + + n, f (x, y), f (x, y) = f(ξ j, η j )χ j (x, y), j=1 ((ξ j, η j ) j, 1 j n) (6.2.6), f(x, y) 2, I = f(x, y)dxdy = lim f (x, y)dxdy = lim f(ξ j, η j )µ( j ) (6.2.7) j=1 9

., R = f(ξ j, η j )µ( j ) (6.2.8) j=1., K = [a, b] [c, d], b d a c f(x, y)dxdy (6.2.9) (6.2.5),, f(x, y), x, y., I.,., R 2. f(x, y). () : = 1 + 2 + + n (6.2.10). i f(x, y) M i, m i, f(x, y) M, m., g (x, y) = M i χ i (x, y), (6.2.11) h (x, y) = m i χ i (x, y) (6.2.12),, lim g (x, y) = f(x, y), (6.2.13) lim h (x, y) = f(x, y) (6.2.14) 10

, g (x, y) h (x, y) 2 S, s, S = s = g (x, y)dxdy = h (x, y)dxdy = M i µ( i ), (6.2.15) m i µ( i ). (6.2.16)., µ( i ) i., mµ() s S Mµ() (6.2.17), µ() <,, {s } {S }, S = inf S, s = sup s (6.2.18), s S (6.2.19), 6.2.1 ( ),, lim s = s, lim S = S (6.2.20) f(x, y) 11

6.2.2 R 2, f(x, y)., f(x, y) s = S. v i = M i m i i f(x, y)., V = S s = v i µ( i ) (6.2.21), s = S,,, lim V = lim v i µ( i ) = 0 (6.2.22) 6.2.3 f(x, y) 6.2.2, f(x, y),, 6.2.1, lim V = lim v i µ( i ) = 0 f(x, y) 6.2.3. lim V = lim v i µ( i ) = 0, ε > 0,, V = v i µ( i ) < ε (6.2.23) 12

6.2.1 R 2 f(x, y), f(x, y) 6.2.3, K 0. //, 2. 6.2.4. R 2, ε > 0, δ = δ(), v i = M i m i < ε., V = v i µ( i ) < εµ(). (6.2.24) ε, 6.2.1.// 6.2.2 R 2 f(x, y) B 0, f(x, y) 6.2.2 2.2.5 2.2.2. 13

6.3 2, 2 6.3.1 R 2, f(x, y) g(x, y), (1) (6) : (1) α, β, αf(x, y) + βg(x, y), : {αf(x, y) + βg(x, y)}dxdy = α f(x, y)dxdy + β g(x, y)dxdy. (6.3.1) (2) = 1 + 2, : f(x, y)dxdy = f(x, y)dxdy+ f(x, y)dxdy. 1 2 (6.3.2) (3) f(x, y) 0, f(x, y)dxdy 0 (6.3.3)., f(x, y) (x 0, y 0 ), f(x 0, y 0 ) > 0, : f(x, y)dxdy > 0. (6.3.4) 14

(3 ) f(x, y) g(x, y), f(x, y)dxdy g(x, y)dxdy (6.3.5)., f(x, y) g(x, y) (x 0, y 0 ), f(x 0, y 0 ) > g(x 0, y 0 ), f(x, y)dxdy > g(x, y)dxdy. (6.3.6) (4) f(x, y), f(x, y)dxdy f(x, y) dxdy (6.3.7) (5) f(x, y)g(x, y) (6), g(x, y) k > 0 k f(x, y), g(x, y) 6.3.2 ( ) R 2, f(x, y), f(x, y) M, m, f(x, y)dxdy = αµ() (6.3.8) α., m α M., f(x, y), α = f(x 0, y 0 ) (x 0, y 0 ) 15

6.3.1(3 ), mµ() = mdxdy f(x, y)dxdy Mdxdy = Mµ(). (6.3.9), (6.3.8).// 6.3.2 6.3.3 R 2,, f(x, y), φ(x, y),, (ξ, η), f(x, y)φ(x, y)dxdy = f(ξ, η) φ(x, y)dxdy (6.3.10) 6.3.1 R 2., f(x, y), f(x, y),. 1 6.3.4 R 2, K = [a, b] [c, d]. f(x, y), f(x, y), ((x, y) ), f (x, y) = (6.3.11) 0, ((x, y) K\) 16

., χ (x, y), f (x, y) = f(x, y)χ (x, y)., : f(x, y)dxdy = b d a c f(x, y)χ (x, y)dxdy. (6.3.12) 17