SO(2)

Similar documents
TOP URL 1

TOP URL 1

all.dvi

TOP URL 1

all.dvi

EPSON LP-8900ユーザーズガイド

TOP URL 1

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

meiji_resume_1.PDF

all.dvi

linearal1.dvi


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

keisoku01.dvi

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

Gmech08.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

EPSON VP-1200 取扱説明書

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

『共形場理論』

量子力学 問題

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

DVIOUT-HYOU

untitled

all.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Note.tex 2008/09/19( )

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

LLG-R8.Nisus.pdf

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

学習内容と日常生活との関連性の研究-第2部-第6章

,2,4

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

untitled

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

,,..,. 1


Part () () Γ Part ,

( )

直交座標系の回転

0406_total.pdf

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Armstrong culture Web

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

行列代数2010A

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)


2000年度『数学展望 I』講義録

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

DVIOUT-fujin


( ) ,

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

QMII_10.dvi

( ) ( )

Dynkin Serre Weyl

Microsoft Word - 11問題表紙(選択).docx

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

PSCHG000.PS

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


EPSON LP-S7000 セットアップガイド

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

AHPを用いた大相撲の新しい番付編成

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

Untitled

Transcription:

TOP URL http://amonphys.web.fc2.com/ 1

12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6 12.5 SO(3).......................... 7 12.6......................... 9 12.7 SO(4) SO(5)............................. 10 12.8................................ 11 12.9..................... 12 12.10 SU(3)......................... 13 2

12 12.1 G G G ( ) 0 n GL(n, C) 1 n SL(n, C) SL(n, C) GL(n, C) n : GL(n, C) n det A 0 2n 2 SL(n, C) n det A = 1 2n 2 2 U(n) n A A = δ n 2 SU(n) n A A = δ, det A = 1 n 2 1 n : GL(n, R) n det A 0 n 2 SL(n, R) n det A = 1 n 2 1 O(n) n A T A = δ n(n 1)/2 SO(n) n A T A = δ, det A = 1 n(n 1)/2 3

δ R C 12.2 G δ ɛ δ + ɛx G X <G> G 2 (X <G> a R) ax <G>. [ ] ɛ δ + ɛx G. ɛ = ɛ a ɛ δ + ɛ ax G. ax <G>. [ ] X, Y <G> X + Y <G>. [ ] G (δ + ɛx)(δ + ɛy ) G. ɛ δ + ɛ(x + Y ) G. X + Y <G>. [ ] <G> T a (a = 1, 2,, N) <G> θ a ( ) X = θ a T a (1) ( ) 2 X <G> e X G. (2) [ ] G n (δ + ɛx) n G. ɛ δ + ɛx = e ɛx e nɛx G. nɛ = 1 n [ ] X, Y <G> [X, Y ] <G>. (3) [ ] e ɛx e ɛy e ɛx e ɛy G. ɛ δ + ɛ 2 [X, Y ] G. [X, Y ] <G>. [ ] (3) T a [T a, T b ] = f abc T c 4

f abc (1)(2) A(θ) = e θ at a G. T a G 2 ( ) M M ( T a N) (* ) 2 G, G ab G (f(ab) = f(a)f(b)) f : G G f f ( ) G G 12.3 n O(n) (n 2) A T A = δ n A ( δ ) det A T = det A (det A) 2 = 1 det A = ±1. O(n) 2 det A = +1 n SO(n) O(n) SO(n) : P = diag(1,, 1, 1) SO(n) A = δ + ɛx ( ɛ ) 5

X T = X <SO(n)> n < SO(n) > n(n 1)/2 SO(n) 12.4 SO(2) n = 2 X T = X θ ( ) 0 1 X = θt, T = 1 0 T 1 0 SO(2) = { e θt θ R } [X, Y ] = 0 [e X, e Y ] = 0 SO(2) 1 SO(2) ( ) { ( ) } 0 θ iθ 0 A(θ) = e θt = exp = exp U U θ 0 0 iθ ( ) ( ) e iθ 0 cos θ sin θ = U 0 e iθ U =. U = 1 ( ) 1 1. sin θ cos θ 2 i i U 2 δ (n = 0 mod 4) T n T (n = 1 mod 4) = δ (n = 2 mod 4) T (n = 3 mod 4) A(θ) = e θt = n=0 1 (θt )n n! = δ + θt 1 2! θ2 δ 1 3! θ3 T + 1 4! θ4 δ + 1 5! θ5 T + ( ) cos θ sin θ = cos θ δ + sin θ T = sin θ cos θ 6

SO(2) 1 { 1 } e θ. R + { i } e iθ. 1 U(1) : U(1) = { e iθ θ R }. A(θ)A(φ) = A(θ + φ) 0 {δ}. 12.5 SO(3) n = 2 n = 3 n = 3 X T = X X = θ a T a, a = 1, 2, 3, 0 0 0 0 0 1 0 1 0 T 1 = 0 0 1, T 2 = 0 0 0, T 3 = 1 0 0 0 1 0 1 0 0 0 0 0 3 ɛ abc (T a ) bc = ɛ bac T a SO(3) SO(3) = { e θ at a θ a R, a = 1, 2, 3 } [T a, T b ] = ɛ abc T c <SO(3)> ɛ abc SO(3) 3 7

[J a, J b ] = iɛ abc J c ( ) ij a ɛ abc J a (R (l) a ) mm = <l, m J a l, m > a l ɛ abc {e iθ ar (l) a } SO(3) l (2l + 1) ir (l) J 1 = 1 2 (J + + J ), J 2 = 1 2i (J + J ), J ± l, m> = (l m)(l ± m + 1) l, m ± 1>, J 3 l, m> = m l, m>. l = 0 R (0) a = 0 1 {δ} l = 1/2 +> = 1 2, + 1 2 >, > = 1 2, 1 2 > <+ J 1 > = 1 2, < J 1 +> = 1 2, <+ J 2 > = i 2, < J 2 +> = i 2, <+ J 3 +> = 1 2, < J 3 > = 1 2 0 R a (1/2) = σ ( ) ( ) ( ) a 0 1 0 i 1 0 σ 1 =, σ 2 =, σ 3 = 2, 1 0 i 0 0 1 σ a : σ a = σ a, tr σ a = 0 8

M det e M = e trm ( ) {e iθ aσ a /2 } 1 2 SU(2) : SU(2) = { e iθ aσ a /2 θ a R, a = 1, 2, 3 }. SO(3) 2 l = 1 R a (1) = τ a, τ 1 = 1 0 1 0 1 0 1, τ 2 = i 0 1 0 1 0 0 1 0 1, τ 3 = 0 0 0 2 2 0 1 0 0 1 0 0 0 1 {e iθ aτ a } 3 4 5 a 3 (z ) (R (l) 3 ) mm = mδ mm R (l) 12.6 SO(3) e θ at a θ a = θn a, n a n a = 1 n a θ n a T a n a T a = U diag(0, i, i) U, n 1 γ(n 2 1 1) γ(n 2 1 1) 1 U = n 2 γ(n 1 n 2 + in 3 ) γ(n 1 n 2 in 3 ), γ = 2(1 n 2 n 3 γ(n 1 n 3 in 2 ) γ(n 1 n 3 + in 2 ) 1 ) e θ at a = e θn at a = U diag(1, e iθ, e iθ ) U cos θ + n 2 1(1 cos θ) n 1 n 2 (1 cos θ) n 3 sin θ n 1 n 3 (1 cos θ)+n 2 sin θ = n 2 n 1 (1 cos θ)+n 3 sin θ cos θ + n 2 2(1 cos θ) n 2 n 3 (1 cos θ) n 1 sin θ n 3 n 1 (1 cos θ) n 2 sin θ n 3 n 2 (1 cos θ)+n 1 sin θ cos θ + n 2 3(1 cos θ) 3 9

12.7 SO(4) SO(5) n = 4 X T = X 0 θ 3 θ 2 φ 1 θ X = 3 0 θ 1 φ 2 θ 2 θ 1 0 φ 3 = θ at a + φ a S a φ 1 φ 2 φ 3 0 (T a ) ij = ɛ iaj4, (S a ) ij = δ ai δ 4j δ aj δ 4i, a = 1, 2, 3 <SO(4)> 6 : SO(4) = { e θ at a +φ a S a θ a, φ a R, a = 1, 2, 3 }. [T a, T b ] = ɛ abc T c, [T a, S b ] = ɛ abc S c, [S a, S b ] = ɛ abc T c T a i 2 σ a, S a ± i 2 σ a ( σ a ) { e (i/2)(θ a φ a )σ a } SO(4) 2 n = 5 (T a ) ij = ɛ iaj45, (S a ) ij = δ ai δ 4j δ aj δ 4i, (S a) ij = δ ai δ 5j δ aj δ 5i, (R) ij = δ 4i δ 5j δ 4j δ 5i SO(5) = { e θ at a +φ a S a +φ as a+ωr θ a, φ a, φ a, ω R, a = 1, 2, 3 }. [T a, T b ] = ɛ abc T c, [S a, S b ] = ɛ abc T c, [S a, S b] = ɛ abc T c, [T a, S b ] = ɛ abc S c, [T a, S b] = ɛ abc S c, [T a, R] = O, [S a, S b] = δ ab R, [S a, R] = S a, [S a, R] = S a 10

( O ) 2 T a i ( ) σa 0, S a i ( ) 0 σa, 2 0 σ a 2 σ a 0 S a 1 ( ) 0 σa, R i ( ) δ 0 2 σ a 0 2 0 δ <SO(5)> 4 [σ a, σ b ] = 2iɛ abc σ c, {σ a, σ b } = 2δ ab δ {A, B} = AB + BA 12.8 : [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0. [T a, T b ] = f abc T c f bcd f ade + f cad f bde + f abd f cde = 0 f bac = f abc f cad f dbe f cbd f dae = f abd f cde (F a ) bc = f bac F a ( ) 3 SO(3) T a SU(2) SO(3) [ ] SO(4) = { e θ AT A θ A R, A = 1, 2,, 6 } (T a ) ij = ɛ iaj4, (T a ) ij = δ ai δ 4j δ aj δ 4i, a = 1, 2, 3, a = a + 3 = 4, 5, 6. [ ] [T a, T b ] = ɛ abc T c, [T a, T b ] = ɛ abc T c, [T a, T b ] = ɛ abc T c 11

f abc = f ab c = f a bc = f a b c = ɛ abc ( 0 ). (F A ) BC = f BAC ( ) ( ) Ea O O Ea F a =, F a =, (E a ) bc = ɛ bac O O E a E a { e θ AF A } SO(4) (6 ) [ ] 12.9 n U(n) A A = δ n A A = δ + ɛx ( ɛ ) X = X X n T µ n X = iθ µ T µ T µ n n 2 T µ n 2 0 n 2 1 U(n) U(n) = {e iθ µt µ θ µ R, µ = 0, 1,, n 2 1 } n 2 T µ µ ν (T µ) ij (T ν ) ij = 0 (T µ ) ji (T ν ) ij = 0 tr(t µ T ν ) = 0. T 0 U(n) = {e iθ 0 e iθ at a } = U(1) {e iθ at a } a = 1, 2,, n 2 1 T 0, T a tr T a = 0 e iθ at a 1 SU(n) n 2 U(n) = U(1) SU(n), 12

SU(n) = {e iθ at a θ a R, a = 1,, n 2 1} T a tr(t a T b ) = 1 2 δ ab SU(2) T a = σ a /2 <SU(n)> f abc [ it a, it b ] = f abc ( it c ) [T a, T b ] = if abc T c. tr ([T a, T b ] T c ) = i 2 f abc f abc a, b, c 12.10 SU(3) SU(3) T a = λ a /2. 0 1 0 0 i 0 1 0 0 λ 1 = 1 0 0, λ 2 = i 0 0, λ 3 = 0 1 0, 0 0 0 0 0 0 0 0 0 0 0 1 0 0 i λ 4 = 0 0 0, λ 5 = 0 0 0, 1 0 0 i 0 0 0 0 0 0 0 0 λ 6 = 0 0 1, λ 7 = 0 0 i, λ 8 = 1 1 0 0 0 1 0 3 0 1 0 0 i 0 0 0 2 T a 0 tr(t a T b ) = (1/2)δ ab SU(3) SU(3) = {e iθ aλ a /2 θ a R, a = 1, 2,, 8 } 13

<SU(3)> f abc tr ([λ a, λ b ] λ c ) = 4if abc f abc 8C 3 = 56 a < b < c f 123 = 1, f 147 = 1 2, f 156 = 1 2, f 246 = 1 2, f 257 = 1 2, f 345 = 1 2, f 367 = 1 2, f 458 = 3 2, f 678 = 3 2 0 ( ) SU(n) SU(n) SO(3) (* ) Excel VBA / for VBA URL: http://amonphys.web.fc2.com/ 14

........................ 11.................................. 7.....................................5.................................. 5............................. 13.................................. 5....................................... 3.....................................5................................ 5................................. 11.............................. 8.............................. 9................................... 12.....................................5.................................. 5....................................... 5.................................. 5...........................12................................ 8................................. 11.................................. 5....................................... 5................................... 14.............................. 9............................. 11............................... 12.....................................4.....................................3.................................. 4.....................................3..................... 9 15