Anderson ( ) Anderson / 14

Similar documents
Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W



2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

プログラム

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

QMI_09.dvi

QMI_10.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

³ÎΨÏÀ

all.dvi

main.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

本文/目次(裏白)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê


LLG-R8.Nisus.pdf

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

xia2.dvi

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

untitled

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

ssp2_fixed.dvi

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

all.dvi

( ) Loewner SLE 13 February


Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

MS#sugaku(ver.2).dvi

takei.dvi

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

TOP URL 1

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

30

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

日本内科学会雑誌第102巻第4号

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Z: Q: R: C: sin 6 5 ζ a, b

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

all.dvi

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Morse ( ) 2014

The Physics of Atmospheres CAPTER :

QMI13a.dvi

Erased_PDF.pdf

08-Note2-web

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

画像工学特論

DVIOUT-fujin

: , 2.0, 3.0, 2.0, (%) ( 2.

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

B


反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Transcription:

Anderson 2008 12 ( ) Anderson 2008 12 1 / 14

Anderson ( ) Anderson 2008 12 2 / 14

Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14

Anderson tight binding Anderson tight binding Z d u (x) = V i u t (u(x) u(y)) y: y x =1 = Hu = u + λvu ( ) Anderson 2008 12 4 / 14

Anderson tight binding Anderson tight binding Z d u (x) = V i u t V (u(x) u(y)) y: y x =1 = Hu = u + λvu {V ω (x)} x Z d V ω (x) g(v) 0 g(v) M ( ) Anderson 2008 12 4 / 14

Anderson tight binding Anderson tight binding Z d u (x) = V i u t V (u(x) u(y)) y: y x =1 = Hu = u + λvu {V ω (x)} x Z d V ω (x) g(v) 0 g(v) M R d ( ) Anderson 2008 12 4 / 14

Dynamical localization (mean square displacement) r(t) 2 = x Z d x 2 u (t, x) 2 ( ) Anderson 2008 12 5 / 14

Dynamical localization (mean square displacement) V = 0 r(t) 2 = x Z d x 2 u (t, x) 2 r(t) 2 Ct 2 as t ( ) Anderson 2008 12 5 / 14

Dynamical localization (mean square displacement) V = 0 r(t) 2 = x Z d x 2 u (t, x) 2 r(t) 2 Ct 2 as t Dynamical localization r(t) 2 C as t ( ) Anderson 2008 12 5 / 14

Dynamical localization (mean square displacement) V = 0 r(t) 2 = x Z d x 2 u (t, x) 2 r(t) 2 Ct 2 as t Dynamical localization r(t) 2 C as t Brown motion r(t) 2 Ct as t ( ) Anderson 2008 12 5 / 14

H = H = E 0 E Σ (de ), (Σ (de ) ) ( ) Anderson 2008 12 6 / 14

H = H = E Σ (de ), (Σ (de ) ) E 0 Schrödinger ) ( ) u(t, ) = (e ith u 0 ( ) = e ite Σ (de ) u 0 ( ) E 0 ( ) Anderson 2008 12 6 / 14

H = H = E Σ (de ), (Σ (de ) ) E 0 Schrödinger ) ( ) u(t, ) = (e ith u 0 ( ) = e ite Σ (de ) u 0 ( ) E 0 Σ (de ) E point mass H u 0 E φ u(t, ) = e ite φ ( ) = t u(t, ) ( ) Anderson 2008 12 6 / 14

H = H = E Σ (de ), (Σ (de ) ) E 0 Schrödinger ) ( ) u(t, ) = (e ith u 0 ( ) = e ite Σ (de ) u 0 ( ) E 0 Σ (de ) E point mass H u 0 E φ u(t, ) = e ite φ ( ) = t u(t, ) Σ (de ) u(t, x) t u (t, x) 2 = u 0 (x) 2 = u(t, ) t x Z d x Z d ( ) Anderson 2008 12 6 / 14

H = H = E Σ (de ), (Σ (de ) ) E 0 Schrödinger ) ( ) u(t, ) = (e ith u 0 ( ) = e ite Σ (de ) u 0 ( ) E 0 Σ (de ) E point mass H u 0 E φ u(t, ) = e ite φ ( ) = t u(t, ) Σ (de ) u(t, x) t u (t, x) 2 = u 0 (x) 2 = u(t, ) t x Z d x Z d Σ (de ) Σ (de ) = Σ ac (de ) Σ sc (de ) Σ p (de ) Σ (de ) = Σ p (de ) Σ (de ) = Σ ac (de ) (extended states) ( ) Anderson 2008 12 6 / 14

1D, 2D 3D ( ) Anderson 2008 12 7 / 14

1D, 2D 3D 3D ( ) Anderson 2008 12 7 / 14

K.Ishii: Localization of eigenstates and transport phenomena in 1-dim. disordered systems, Prog.Theor.Phys.Suppl. 53(1973) Σ ω ac (de ) = 0 ( ) Anderson 2008 12 8 / 14

K.Ishii: Localization of eigenstates and transport phenomena in 1-dim. disordered systems, Prog.Theor.Phys.Suppl. 53(1973) Σ ω ac (de ) = 0 I.Goldseid,S.Molchanov,L.Pastur: A pure point spectrum of the stochastic 1-dimensional Schröinger equation. Funct. Anal. Appl. 11(1977) Σ ω (de ) = Σ ω p (de ) ( ) Anderson 2008 12 8 / 14

K.Ishii: Localization of eigenstates and transport phenomena in 1-dim. disordered systems, Prog.Theor.Phys.Suppl. 53(1973) Σ ω ac (de ) = 0 I.Goldseid,S.Molchanov,L.Pastur: A pure point spectrum of the stochastic 1-dimensional Schröinger equation. Funct. Anal. Appl. 11(1977) Σ ω (de ) = Σ ω p (de ) coupling λ ( ) Anderson 2008 12 8 / 14

J.Frölich, T.Spencer: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy, CMP. 88(1983) λ 1 = λ = 0 = ( ) Anderson 2008 12 9 / 14

J.Frölich, T.Spencer: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy, CMP. 88(1983) λ 1 = λ = 0 = (Green G E = (H E ) 1 ( ) Anderson 2008 12 9 / 14

J.Frölich, T.Spencer: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy, CMP. 88(1983) λ 1 = λ = 0 = (Green G E = (H E ) 1 Wegner Λ Z d H Λ = H Λ Prob (dist (E, sph Λ ) δ) n λ (E )δ Λ, n λ (E ) = ( ) Anderson 2008 12 9 / 14

J.Frölich, T.Spencer: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy, CMP. 88(1983) λ 1 = λ = 0 = (Green G E = (H E ) 1 Wegner Λ Z d H Λ = H Λ Prob (dist (E, sph Λ ) δ) n λ (E )δ Λ, n λ (E ) = Combes-Thomas dist (E, sph Λ ) = κ (E C) G Λ,E (x, y) κ 1 e cκ x y, c ( ) Anderson 2008 12 9 / 14

J.Frölich, T.Spencer: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy, CMP. 88(1983) λ 1 = λ = 0 = (Green G E = (H E ) 1 Wegner Λ Z d H Λ = H Λ Prob (dist (E, sph Λ ) δ) n λ (E )δ Λ, n λ (E ) = Combes-Thomas dist (E, sph Λ ) = κ (E C) G Λ,E (x, y) κ 1 e cκ x y, c Resolvent H = H 0 + H 1 = G E = G 0,E G 0,E H 1 G E ( ) Anderson 2008 12 9 / 14

J.Frölich, T.Spencer: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy, CMP. 88(1983) λ 1 = λ = 0 = (Green G E = (H E ) 1 Wegner Λ Z d H Λ = H Λ Prob (dist (E, sph Λ ) δ) n λ (E )δ Λ, Combes-Thomas n λ (E ) = dist (E, sph Λ ) = κ (E C) G Λ,E (x, y) κ 1 e cκ x y, c Resolvent H = H 0 + H 1 = G E = G 0,E G 0,E H 1 G E Multiscale analysis: H 0 = H Λ H Λ c { 1 if x y = 1, x Λ, y Λ H 1 (x, y) = c or vise versa 0 otherwise Resolvent ( ) Anderson 2008 12 9 / 14

J.Frölich, T.Spencer: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy, CMP. 88(1983) λ 1 = λ = 0 = (Green G E = (H E ) 1 Wegner Λ Z d H Λ = H Λ Prob (dist (E, sph Λ ) δ) n λ (E )δ Λ, Combes-Thomas n λ (E ) = dist (E, sph Λ ) = κ (E C) G Λ,E (x, y) κ 1 e cκ x y, c Resolvent H = H 0 + H 1 = G E = G 0,E G 0,E H 1 G E Multiscale analysis: H 0 = H Λ H Λ c { 1 if x y = 1, x Λ, y Λ H 1 (x, y) = c or vise versa 0 otherwise Resolvent Green GE ω (0, y) c ω e c y ( ) Anderson 2008 12 9 / 14

Erdös, Lázló- Salmhofer, Manfred- Yau, Horng-Tzer: Towards the quantum Brownian motion. Mathematical physics of quantum mechanics, 233 257, Lecture Notes in Phys., 690, Springer, Berlin, 2006 3 d, 1 λ = r(t) 2 Dt if λ 2 t λ 2 ε for ε > 0 r(t) 2 Ct 2 if t λ 2 ( ) Anderson 2008 12 10 / 14

Erdös, Lázló- Salmhofer, Manfred- Yau, Horng-Tzer: Towards the quantum Brownian motion. Mathematical physics of quantum mechanics, 233 257, Lecture Notes in Phys., 690, Springer, Berlin, 2006 3 d, 1 λ = r(t) 2 Dt if λ 2 t λ 2 ε for ε > 0 r(t) 2 Ct 2 if t λ 2 3D 1 λ r(t) 2 Dt as t ( ) Anderson 2008 12 10 / 14

Erdös, Lázló- Salmhofer, Manfred- Yau, Horng-Tzer: Towards the quantum Brownian motion. Mathematical physics of quantum mechanics, 233 257, Lecture Notes in Phys., 690, Springer, Berlin, 2006 3 d, 1 λ = r(t) 2 Dt if λ 2 t λ 2 ε for ε > 0 r(t) 2 Ct 2 if t λ 2 3D 1 λ r(t) 2 Dt as t A.Klein: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133(1998) Bethe ( ) Anderson 2008 12 10 / 14

( ) Anderson 2008 12 11 / 14

IDS 1 N(E ) = lim Λ Z Λ # { HΛ ω E } ( ) Anderson 2008 12 11 / 14

IDS Lyapounov 1 γ (E ) = lim x U ω (x + 1, E ) = 1 N(E ) = lim Λ Z Λ # { HΛ ω E } x log Uω (x, E ) 0, ( 0 1 1 2 + E V ω (x + 1) ) U ω (x, E ) ( ) Anderson 2008 12 11 / 14

IDS Lyapounov 1 γ (E ) = lim x U ω (x + 1, E ) = 1 N(E ) = lim Λ Z Λ # { HΛ ω E } x log Uω (x, E ) 0, ( 0 1 1 2 + E V ω (x + 1) ) U ω (x, E ) ( ) Anderson 2008 12 11 / 14

IDS Lyapounov 1 γ (E ) = lim x U ω (x + 1, E ) = 1 N(E ) = lim Λ Z Λ # { HΛ ω E } x log Uω (x, E ) 0, ( 0 1 1 2 + E V ω (x + 1) Σ ω (= suppσ ω (de )) = suppdn(e ) ) U ω (x, E ) ( ) Anderson 2008 12 11 / 14

IDS Lyapounov 1 γ (E ) = lim x U ω (x + 1, E ) = 1 N(E ) = lim Λ Z Λ # { HΛ ω E } x log Uω (x, E ) 0, ( 0 1 1 2 + E V ω (x + 1) ) U ω (x, E ) Σ ω (= suppσ ω (de )) = suppdn(e ) Σac ω (= suppσac ω (de )) = {E; γ (E ) = 0} ess ( ) Anderson 2008 12 11 / 14

IDS Lyapounov 1 γ (E ) = lim x U ω (x + 1, E ) = 1 N(E ) = lim Λ Z Λ # { HΛ ω E } x log Uω (x, E ) 0, ( 0 1 1 2 + E V ω (x + 1) ) U ω (x, E ) Σ ω (= suppσ ω (de )) = suppdn(e ) Σac ω (= suppσac ω (de )) = {E; γ (E ) = 0} ess m± ω Weyl m+(e ω + i0) = m ω (E + i0) a.e. {E; γ (E ) = 0} ( ) Anderson 2008 12 11 / 14

S R V ω (x) S V ω (x) ( ) Anderson 2008 12 12 / 14

S R V ω (x) S V ω (x) Mathieu (Hu) x = u x+1 + u x 1 + 2λ cos 2π (αx + ω) u x α : λ > 1 = λ = 1 = λ < 1 = André-Aubry, Avila, Jitomirskya, Last, Simon, ( ) Anderson 2008 12 12 / 14

S R V ω (x) S V ω (x) Mathieu (Hu) x = u x+1 + u x 1 + 2λ cos 2π (αx + ω) u x α : λ > 1 = λ = 1 = λ < 1 = André-Aubry, Avila, Jitomirskya, Last, Simon, ( ) Anderson 2008 12 12 / 14

( ) Anderson 2008 12 13 / 14

( ) Anderson 2008 12 13 / 14

e.g.:penrose ( ) Anderson 2008 12 13 / 14

e.g.:penrose ( ) Anderson 2008 12 13 / 14

e.g.:penrose ( ) Anderson 2008 12 13 / 14

e.g.:penrose ( ) Anderson 2008 12 13 / 14

e.g.:penrose ( ) Anderson 2008 12 13 / 14

e.g.:penrose d 2 x ω (t) dt 2 = grad V ω (x ω (t)) = {x ω (t)} = ( ) Anderson 2008 12 13 / 14

e.g.:penrose d 2 x ω (t) dt 2 = grad V ω (x ω (t)) = {x ω (t)} = e.g.: ( ) Anderson 2008 12 13 / 14

Isaac Newton Institute for Mathematical Sciences Mathematics and Physics of Anderson localization : 50 Years After 14 July - 19 December 2008 (http://www.newton.ac.uk/programmes/mpa/) Spencer, T (IAS, Princeton) Anderson localisation: phenomenology and mathematics ( ) Anderson 2008 12 14 / 14