158 A (3) X X (X-raystressmeasurement) X X 10μm (4) X X (neutron stress measurement) X (5) (magnetostriction) (magnetostriction stress measurem

Similar documents

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Mott散乱によるParity対称性の破れを検証

陦ィ邏・2

text_0821.dvi

X線-m.dvi

Report10.dvi

Undulator.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Microsoft Word - 章末問題

untitled

2


総研大恒星進化概要.dvi

di-problem.dvi

untitled

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

4‐E ) キュリー温度を利用した消磁:熱消磁

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Study on Imaging and Strain Mapping in the Vicinity of Internal Crack Tip Using Synchrotron White X-Ray


PDF

yoo_graduation_thesis.dvi


176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)


Donald Carl J. Choi, β ( )

C: PC H19 A5 2.BUN Ohm s law

空気の屈折率変調を光学的に検出する超指向性マイクロホン

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

土木学会構造工学論文集(2009.3)

untitled

untitled

note1.dvi

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

jse2000.dvi

y.\

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

日本電子News vol.44, 2012

untitled

MAIN.dvi

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

untitled

15

untitled

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

I

Q E Q T a k Q Q Q T Q =

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

1 2 2 (Dielecrics) Maxwell ( ) D H

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

高等学校学習指導要領

高等学校学習指導要領

量刑における消極的責任主義の再構成

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

SPring-8_seminar_

数学の基礎訓練I

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

36 th IChO : - 3 ( ) , G O O D L U C K final 1

untitled

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

gk9c02a.dvi

X u

0.1 I I : 0.2 I

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®


18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

スライド 1

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Annual-report-vol-61.pdf

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

X X 0 X 4 K K 1 K 2 K 1 K 2 6[eV] 6[eV] X 3: % 23.8[eV]

èCò_ï\éÜ.pdf

F8302D_1目次_ doc

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

fa-problem.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Part () () Γ Part ,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

JIS Z803: (substitution method) 3 LCR LCR GPIB

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

構造と連続体の力学基礎

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

ARspec_decomp.dvi

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )


dvipsj.4852.dvi

01_教職員.indd


untitled

電子部品はんだ接合部の熱疲労寿命解析

H17-NIIT研究報告

吸収分光.PDF

Transcription:

A 1) A.1 (point-by-point measurement) (full-field measurement) A.1 A.2 A.1.1 (1) (electric resistance strain meter) 0.2ο120mm 1 10 6 (2) 2 2 (extensometer) 157

158 A (3) X X (X-raystressmeasurement) X X 10μm (4) X X (neutron stress measurement) X 1000 1 (5) (magnetostriction) (magnetostriction stress measurement) (6) ( ) 2 (acoustoelastice effect) (acoustoelastic method) B V T 1 V T2 (V T1 + V T2 )=2 = B 0 + C A (ff 1 ff 2 ) (A.1) V T1 V T2 C A B 0 ( ) B o mm 2

A.1. 159 (7) 2 2 (8) (Caustics) (9) (10) (laser Raman microspectroscopy) μm (11) (higher order Laue zone line : HOLZ) (convergent beam electron diffraction method : CBED method) 10nm (12)

160 A (hole-drilling method) Stoney X X A.1: ( ) X X ffl (μm )

A.1. 161 A.1.2 (1) (photo elasticity) 2 3 A.2: ffl

162 A (2) (photoeastic coating method) (3) (moire method) (4) (5) (holographic method) (6) (speckle method) () ( ) (7) CCD

A.2. 163 (9) (brittle lacquer coating) (8) (thermoelastic effect) (thermoelastic method) (10) A.2 A.2.1 (Cu) (Ni) A.1 μm R ( A.1 ) " R R R = K" (A.2)

164 A K (gage factor) 120Ω 2.0 K R R R=R K A.1: A.2: A.2.2 (Wheatstone bridge) A.2 3 (a) 1 1 (b) 2 (active gauge) (dummy gauge) (c) 4 4 Hooke 2 2 90 ffi 3 800 ffi C 270 ffi C 1% 3000ο4000 10 6 10000ο20000 10 6 10ο20% (K=80 130)

A.3. 165 A.3 A.3.1 X X X A.3 X 2 = 0 =tan 0 " (A.3) 0 tan 0 90 ffi X X ff x ff y 1 ν 2 =2 0 2 tan 0 ff x sin 2 ψ + 2ν E E tan 0 (A.4) E ν ff x ( A.3 ) X sin 2 ψ 2 ψ 2 A.4 2 sin 2 ψ M E=(1 + ν) ff x sin 2ψ ψ 4 ff x S ff x = SM» E ß S = cot 0 1+ν 180 M = @(2 ) @(sin 2 ψ) (A.5) (A.6) (A.7) 2 deg ß=180 rad deg A.4 S sin 2 ψ A.3: X A.4: 2 sin 2 ψ

166 A sin 2 ψ 2 0 X X Kroner E ν X A.3.2 X X 10μm 0.1mm X X X X 2 1 X (ψ ) 2 X ( 0.7 ffi ) ±2mm X (PSD) X 2 sin 2 ψ 3 ffl ffl 2 2 A.5 < 110 > TiN 1 X 5GPa X X (grazing incidence X-ray diffracrtion)

A.3. 167 (TiN ) A.5: X A.3: X mm Al Ti Fe Ni Cu 1230 50 85 40 53 (150keV) 27 13 6.5 5 5 (150keV) 15.4 3.8 1.4 1.0 1.3 (150keV) 6.5 1.0 0.35 0.24 0.23 Cu-Kff 0.074 0.011 0.004 0.023 0/022 (a) A.6: (b) A.3.3 X X X A.3 66% mm Cu 200 1000 mm 100μm d 0 3 6 A.6 8 3

168 A A.3.4 X X 1) 2) 3) (0.3ο300 kev) 4) 5) (Kff 2 ) 3 (synchrotron radiation:sr) Spring-8 X X X A.3 X 2 (KEK) (PF) A.4 A.4.1 (1) 2 (photoelastic effect) (Brewster's law) h ff 1 ff 2 ffi ff 1 ff 2 ffi = 2ß Ch(ff 1 ff 2 ) (A.8) C ff = C= o ffi A.7 ( )P 1 P 1 (μ ) 2 M ff 1 y ffi ff 1 ;ff 2 2 A 1 ;A 2 ( )P 2 (ß ) P 1 P 2 A 0 1 ;A0 2 x I = ff 2 sin 2 2ffi sin 2 ffi 2 (A.9) ffi ffi =1; 2; 8 < : ffi =2nß I =0 ffi =(2n +1)ß I = maximum (A.10)

A.4. 169 ffi (isochromatic line) (fringe order) N = ffi=2ß (N =0; 1; 2; ) ffi ffi = nß=2 I =0 (isoclinic line) P 1 P 2 A.8 1/4 (ß/2 ) 1/4 Q 1 Q 2 A.8 2 1 O L: C 1 C 2 : F: P 1 :Q 1 Q 2 :1/4 L 1 L 2 : M:P 2 :C: O: A.8: A.7: 2 (2) 3 120ο130 ffi C 2 3 (3) N

170 A A.4.2 " (moiré)" ( ) 2 () (moiré fringe) ( ) =( ) () (geometric moiré) (moiréinterferometry) 3 1 " ρ ρ((1 + ") d " " = p d a = p d (A.11) d 1 2 2 ( ) 20 40 /mm 0.1% M 1=M M 100 1000/mm 2 (phase-shifting moiré interferometry) A.9 (a) 2 A; B ff 1

A.4. 171 (a) (b) A.9: HM : M:WG SF: PM: SP: RT A.10: A.11: PMMA sin ff = f = p (A.12) f A 1 ;B 1 f + f 1 A 1 ;B 1 y () v v N v v = N 2f = Np (A.13) 2 N v 2 4 x; y

172 A A.10 (a) 2 CCD A.11 I A.5 A.5.1 (thermoelastic effect) Kelvin Kelvin T T = kt ff = ff T ff (A.14) ρc p k C p ff ρ T ff T ff A.5.2 A.5.1 T ff k 3.5 10 12 m 2 /N 8.8 10 12 m 2 /N 10MPa T 0.01K 0.026K mk 20mK A.12 1mK 1MPa

A.5. 173 A.12: A.13: ( ) A.14: ( ) A.5.3 A.13 I A.14 A.5.4 1) 2) 3) 4) 5)

174 a) b) c) (1) Lesniak et al. (2) (edge efrect) (3) 1) pp.423-440 2004