2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

Similar documents
18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

II 2 II

i

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

notekiso1_09.dvi

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

応力とひずみ.ppt


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


Untitled

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

. p.1/14

i 18 2H 2 + O 2 2H 2 + ( ) 3K

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,


Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

sec13.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Gmech08.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

Quz Quz

untitled

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

i

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v


1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

pdf

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

v er.1/ c /(21)

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

29

Part () () Γ Part ,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

PowerPoint プレゼンテーション

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

KENZOU

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

1

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

液晶の物理1:連続体理論(弾性,粘性)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Chap11.dvi

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

sin.eps

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

A

meiji_resume_1.PDF

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

77

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Transcription:

2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30

(2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i i i+1 n 3 2 r 2 F i n i 2 i n 1 r 1 1 ( ) A ) dr = n(r)dr n(r) r Γ Γ i B I(2011), Sec. 2. 4 p. 2/30

(4) w W q = B A F B q dr = A E dr. ( ) w Γ w Γ 1 ( ) q q B (5) E(r) = q 4πε 0 ˆr r 2. (i) A B ( A A B) q O r A A r A r B A I(2011), Sec. 2. 4 p. 3/30

w = B A E(r) dr = A A E(r) dr B A E(r) dr 1 A A (ˆr) (dr) E dr = 0. A B dr = ˆrdr (6) w = rb r A q 4πε 0 dr r 2 = q 4πε 0 ( 1 1 ). r A r B (ii) A A A B B q O A A A I(2011), Sec. 2. 4 p. 4/30

(7) w = ra r A = q 4πε 0 q dr 4πε 0 r 2 rb r A ra r A dr r 2 = q 4πε 0 q dr 4πε 0 r 2 ( 1 1 ) r A r B. rb q dr 4πε 0 r 2 = ( ) w (iii) q O B b x a y r θ c E A I(2011), Sec. 2. 4 p. 5/30

abc E (E bc abc ) (8) E dr = E y = E rcosθ. (9) a c a b c E dr = E rcosθ. ( E cosθ E ac ) E(r) w = B A E(r) dr I(2011), Sec. 2. 4 p. 6/30

2.4.2 P 0 φ( ) P 0 A ( A r A ) (10) φ(r A ) w(p 0 A) = A P 0 E(r) dr, B ( : ) A (11) φ(r B ) = B P 0 E(r) dr. A B w(a B) = w(a P 0 )+w(p 0 B) (12) = w(p 0 A)+w(P 0 B) = φ(r B ) φ(r A ). P 0 I(2011), Sec. 2. 4 p. 7/30

(13) (14) w(a B) = B A B A E(r) dr. E(r) dr = φ(r B ) φ(r A ). φ: ( ) (15) r φ(r) = E(r ) dr. P 0 P 0 q (6) r A, r B = r (16) φ(r) = q 4πε 0 1 r. I(2011), Sec. 2. 4 p. 8/30

( (2. 3. 4)) (17) E(r) = i E i (r), (E i i ) (18) r r φ(r) = E(r ) dr = E i (r ) dr P 0 P 0 i = r E i (r ) dr = φ i (r) i P 0 i (φ i i ) = 1 q i 4πε i 0 r r i. I(2011), Sec. 2. 4 p. 9/30

( ρ(r)) (19) φ(r) = 1 4πε 0 ρ(r )dv r r. cf. (2. 3. 5) (15) (N/C)m = J/C 1J/C 1V ( Volt) E V/m 2.4.3 2 (x,y,z) (x+dx,y,z) (x,y,z) (x+dx,y,z) x x + dx (20) w = E dr = E x dx. I(2011), Sec. 2. 4 p. 10/30

(21) w = φ(x+dx,y,z) φ(x,y,z) = φ x dx. E x = φ x. y z (22) E = (E x,e y,e z ) = ( φ x, φ y, φ z ). = ( x, y, z ) ( ) I(2011), Sec. 2. 4 p. 11/30

(23) E = φ(r) (= gradφ). (gradient: ) (15) ) f f f f gradient f 2.4.4 rotation( ) A(r) ( Az A(r) = y A y z, A x z A z x, A y x A ) x (24), y A rotation( ) ( A = rota = curla ) (23) I(2011), Sec. 2. 4 p. 12/30

(25) ( E) z = E y x E x y = ( ) φ + ( ) φ x y y x = 2 φ x y + 2 φ y x = 0. x,y (26) E(r) = 0. ) φ A(r) = f(r) (f(r) ) A(r) = 0 (26) (27) E(r) = q 4πε 0 r r 0 r r 0 3 I(2011), Sec. 2. 4 p. 13/30

(28) = = ( E) z = E y x E x y ( q y y 0 4πε 0 x r r 0 3 y [ q (y y 0 ) x 4πε 0 ) x x 0 r r 0 3 1 r r 0 3 (x x 0) y ] 1 r r 0 3 = 0. ) (29) E = 0. ( ) ( ) I(2011), Sec. 2. 4 p. 14/30

2.4.5 (Stokes) ( )Γ A(r) Γ Γ 1 dr ( ) A t (30) A t (r)dr = A(r) dr. Γ ( 1 A t A ) (circulation) (cf. (1)) Γ Γ A P 1 Γ 1 Γ 2 P 2 I(2011), Sec. 2. 4 p. 15/30

P 1, P 2 Γ 1 P1 P 2 A(r) dr = P2 P 1 A(r) dr, Γ 2 P2 A(r) dr, P 1 (31) A(r) dr = A(r) dr + A(r) dr. Γ Γ 1 Γ 2 Γ I(2011), Sec. 2. 4 p. 16/30

(32) =. Γ y 0 + y y ( ) xy y 0 z x 0 x 0 + x x (33) A(r) dr = x0 + x + x 0 x0 x 0 + x A x (x,y 0,z)dx+ y0 + y y 0 A x (x,y 0 + y,z)dx+ A y (x 0 + x,y,z)dy y0 y 0 + y A y (x 0,y,z)dy I(2011), Sec. 2. 4 p. 17/30

= x0 + x + x 0 y0 + y y 0 [A x (x,y 0,z) A x (x,y 0 + y,z)]dx [A y (x 0 + x,y,z) A y (x 0,y,z)]dy A x (x,y 0 + y,z) = A x (x,y 0,z)+ A x(x,y 0,z) y A x (x,y,z) y ( : 2 y +O(( y) 2 ) y=y0 ) x, y 2 x0 + x x 0 A x(x 0,y 0,z) y [ A ] x(x,y 0,z) y y y0 + y dx+ y 0 y x+ A y(x 0,y 0,z) x [ Ay (x 0,y,z) x y x ] x dy I(2011), Sec. 2. 4 p. 18/30

= ( Ay x A ) x x y = ( A) z x y = ( A) z ds y ( x y = = ds ) n( ) z ( ) = ( A) nds = ( A) ds. (ds nds ) ( ) (32) S Γ (34) = = ΓA(r) dr A(r) dr ( A) ds = ( A) ds. ( ) S I(2011), Sec. 2. 4 p. 19/30

(35) A(r) dr = Γ S ( A(r)) ds. : ω r = (x,y,0) v(r) = ( yω,xω,0) v(r) = rω (36) v(r) dr = 2πaaω = 2πa 2 ω. r=a y v r x (37) v(r) = (0,0,2ω) I(2011), Sec. 2. 4 p. 20/30

(38) r a v(r) ds = 2ωπa 2. ) A = 0 A 0 2 P 1, P 2 Γ 1 P 2 Γ (39) A(r) dr = A(r) dr. P 2 1 Γ 1 Γ 2 Γ = Γ 1 Γ 2 (40) A(r) dr = A(r) dr A(r) dr = 0. Γ Γ 1 Γ 2 I(2011), Sec. 2. 4 p. 21/30

( A(r) dr = 0 Γ 2 ) (35) (41) ( A) ds = 0. S S (42) A(r) = 0. ( rotation ) ( A = 0 A dr = 0) A(r) = 0 f(r) A(r) = f(r) 2 A(r) P 0 I(2011), Sec. 2. 4 p. 22/30

(43) P2 P 1 A(r) dr P0 = A(r) dr + P 1 = f(r 2 ) f(r 1 ). P2 P 0 A(r) dr P 1 r f(r) A(r ) dr P (44). 0 P 0 (45) f(r +dr) f(r) = A(r) dr. (dr = (dx,dy,dz)) r 1 P 2 r 2 P 0 r (46) f(r +dr) f(r) = f x dx+ f y dy + f z dz = f(r) dr. I(2011), Sec. 2. 4 p. 23/30

(47) A(r) = f(r). (f ) A = f A = 0 ( (25) (26) ) ( ) (5) (9) w = B A E(r) dr E(r) = g(r)ˆr E(r) r (ii) (48) = w = ra r A B A E(r) dr g(r)dr ra r A g(r)dr = rb r A g(r)dr. I(2011), Sec. 2. 4 p. 24/30

w φ E = φ E = 0 ( ) r (1/r 2 ) E = 0 ( ) (1/r 2 ) ( ) (= 2. 5) 2.4.6 gradient (49) f = ( f x, f y, f z ( f) x = f/ x f x f (cf. (46)) f f ). I(2011), Sec. 2. 4 p. 25/30

( ) (50) φ(r) = const. ( ) (51) E = φ E φ E E φ = const.? E I(2011), Sec. 2. 4 p. 26/30

: 1 q(> 0) +q 1: (cf. 2. 3. 3 ) z (18) d +q [ 2 φ(r) = q 1 (52) O 4πε 0 x2 +y 2 +(z d/2) 2 d q ] 2 1. x2 +y 2 +(z +d/2) 2 I(2011), Sec. 2. 4 p. 27/30

(r = x 2 +y 2 +z 2 d) (53) = = = [ ( φ(r) = q ) 1/2 ) ] 1/2 r 2 zd+ d2 (r 2 +zd+ d2 4πε 0 4 4 [ ( q 1 1 zd ) 1/2 ( 4πε 0 r r + d2 1+ zd ) ] 1/2 2 4r 2 r + d2 2 4r 2 [ q 1 1+ zd ( 4πε 0 r 2r 1 zd ) ] +O((d/r) 2 ) 2 2r 2 q zd 4πε 0 r, 3 p = (0,0,qd) 1 p r. 4πε 0 r 3 I(2011), Sec. 2. 4 p. 28/30

E(r) = φ(r) ( r n / x = nx/r n+2 ) E x 1 [ ] px (54) 4πε 0 r p r3x, 3 r 5 E y 1 [ ] py 4πε 0 r p r3y, 3 r 5 E z 1 [ ] pz 4πε 0 r p r3z. 3 r 5 p ] (55) E(r) = 1 4πε 0 [ 3(p r) r 5 r p r 3 p = (0,0,qd) (p r = qdz) = 1 4πε 0 3(p r)r r 2 p r 5. I(2011), Sec. 2. 4 p. 29/30

(56) E x 1 3qdzx 4πε 0 r 5 E z qd 3z 2 r 2 4πε 0 r 5 = qd 3xz 4πε 0 r, E 5 y qd 3yz 4πε 0 r, 5 = qd 4πε 0 ( 3z 2 r 5 1 r 3 ). z (r = (0,0,z)) (57) (2. 3. 17) xy (z = 0) (58) (xy ) I(2011), Sec. 2. 4 p. 30/30