IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

Similar documents
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N

Automatic Detection of Circular Objects by Ellipse Growing Mitsuo OKABE, Kenichi KANATANI, and Naoya OHTA 1. [4], [5], [18], [19] [14], [17] [28], [32

Vol.-CVIM-7 No.7 /3/8 NLPCA kernel PCA KPCA 4),) NLPCA KPCA NLPCA KPCA principle curve principle surface KPCA ) ),),6),8),),3) ) Jacobian KPCA PCA ) P

IPSJ SIG Technical Report Vol.2009-CVIM-168 No /8/ (2003) Costeira Kanade (1998) AIC Vidal (2005) GPCA Taubin 3 2 EM Multi-stage Opt

IPSJ SIG Technical Report Vol.2009-CVIM-168 No /9/ Latest Algorithm for 3-D Reconstruction from Two Views Kento Yamada, 1 Yasu

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

28 Horizontal angle correction using straight line detection in an equirectangular image

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

E = N M α= = [( pα I α x ) 2 ( α qα + y ) 2 ] α r α r α I α α p α = P X α + P 2 Y α + P 3 Z α + P 4, q α = P 2 X α + P 22 Y α + P 23 Z α + P 24 r α =

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

光学

untitled

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

<95DB8C9288E397C389C88A E696E6462>

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

橡表紙参照.PDF

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf


& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x =

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

JFE.dvi

tnbp59-21_Web:P2/ky132379509610002944

2_05.dvi

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

浜松医科大学紀要

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

,,.,.,,.,.,.,.,,.,..,,,, i

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

1 1 Pixel 0 n 1 n=8 56 R G B RGB M RGB (1) M = 0.99R G B (1) () 4 π d 4 B = L cos φ () 4 ID B L d ID φ d / ID F R φ (3) R

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

24 Depth scaling of binocular stereopsis by observer s own movements

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

IPSJ SIG Technical Report Vol.2017-ARC-225 No.12 Vol.2017-SLDM-179 No.12 Vol.2017-EMB-44 No /3/9 1 1 RTOS DefensiveZone DefensiveZone MPU RTOS

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

J No J. J

untitled

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

カルマンフィルターによるベータ推定( )

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

yasi10.dvi

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

untitled

II

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h


fiš„v8.dvi

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

23_02.dvi

[2] , [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

‰gficŒõ/’ÓŠ¹

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

特集_03-07.Q3C

2 T ax 2 + 2bxy + cy 2 + dx + ey + f = 0 a + b + c > 0 a, b, c A xy ( ) ( ) ( ) ( ) u = u 0 + a cos θ, v = v 0 + b sin θ 0 θ 2π u = u 0 ± a

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

9_18.dvi

A5 PDF.pwd

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

ver.1 / c /(13)

1_26.dvi

dvi

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

14 2 5

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1


L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

202

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

koji07-01.dvi

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

untitled

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

kokyuroku.dvi

Transcription:

1 2 1 2 Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani 1 This paper presents a new method for fitting an ellipse to a point sequence extracted from images. The basic principle is the least squares, minimizing the algebraic distance. Exploiting the fact that the least-squares solution depends on the way the scale is normalized, we analyze the accuracy to high order terms with the scale normalization weight unspecified and determine the weight so that the second order bias is zero. We demonstrate by experiments that our method is superior to the Taubin method, which is also noniterative and known to be highly accurate. Although the highest accuracy is achieved by maximum likelihood, it requires iterations, which may not converge in the presence of large noise. In contrast, our method analytically computes a solution without iterations. 1 Department of Computer Science, Okayama University, Japan 2 Department of Electrical Engineering, Southern Methodist University, U.S.A. 1. 3 9 2,18 17,24,25 22 FS 4 HEIV 16 25 17 24 KCR 11 15 22 14,15 2. Ax 2 + 2Bxy + Cy 2 + 2f Dx + Ey + f 2 F = 1 f x, y 1 21,22 x α, y α, α = 1,..., 1 A,..., F 1 1 f = 6 1 c 29 Information Processing Society of Japan

J A,..., F J = 1 2 Ax 2 α + 2Bx α y α + Cyα 2 + 2f Dx α + Ey α + f 2 F 2 2 A = = F = F = 1 3 A + C = 1 4 A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 5 A 2 + B 2 + C 2 + D 2 + E 2 = 1 6 A 2 + 2B 2 + C 2 = 1 7 AC B 2 = 1 8 3 2 1 1,5,2, 4 1 7,2 5 119 6 28 7 3 3 8 1 4 6 6 u = A B C D E F 9 2 u, u = 1 1 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 1 A 2 + 4B 2 + C 2 + 4f 2 D2 + E 2 + f 4 F 2 = 2 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 1 A 2 + 4B 2 + C 2 + 4f 2 D2 + E 2 = 3 4 AC B 2 = AC B 2 < 1 a, b a, b 8 5 1 3. u 6 ξ ξ = x 2 2xy y 2 2f x 2f y f 2 11 1 u, ξ = 12 x α, y α ξ ξ α 1 J = 1 u, ξ α 2 = 1 u ξ α ξ α u = u, Mu 13 6 6 M M = 1 ξ α ξ α 14 13 u 2 1 u Mu = λu 15 λ λ u λ Mu λ 15 λ u 6 u u u = 1 8 6 5 8 u, u u u, u > u, u < 6 u, u > 6 M u, Mu > u u, u < λ < u u, u λ λ 2 c 29 Information Processing Society of Japan

u u 5 I 15 Mu = λu 16 M Taubin Taubin 23 TB 22 x 2 1 α x α y α f x α TB = 4 x α y α x 2 α + yα 2 x α y α f y α f x α x α y α yα 2 f y α f B x α f y α f 2 17 @ f x α f y α f 2 C A 15 4. x α, y α x α, ȳ α x α, y α ξ α ξ α = ξ α + 1ξ α + 2ξ α 18 ξ α, 1ξ α, 2ξ α x α, y α 1 2 11 x 2 1 α 2 x α ȳ α ȳ ξ α = 2 α, 1 ξ 2f B x α α = C @ 2f ȳ α A f 2 B @ 2 x α x α 2 x α y α + 2ȳ α x α 2ȳ α y α 2f x α 2f y α 1, 2 ξ α = C B A @ x 2 α 2 x α y α yα 2 14,15 2 ξ α 2 ξ α V [ξ α ] = E[ 1ξ α 1ξ α ] E[ ] x α, y α σ E[ x α ] = E[ y α ] =, E[ x 2 α] = E[ y 2 α] = σ 2, E[ x α y α ] = V [ξ α ] = E[ 1ξ α 1ξ α ] = σ 2 V [ξ α ] 2 1 C A 19 x 2 1 α x αȳ α f x α x αȳ α x 2 α + ȳα 2 x αȳ α f ȳ α f x α x V [ξ α ] = 4 αȳ α ȳ 2 α f ȳ α f B x α f ȳ α f 2 21 @ f x α f ȳ α f 2 C A V [ξ α ] σ 2 V [ξ α ] 21 17 Taubin TB = 1 V [ξ α ] 22 x α, ȳ α x α, y α 5. 18 14 M = 1 ξ α + 1 ξ α + 2 ξ α ξ α + 1 ξ α + 2 ξ α = + 1 M + 2 M + 23 3, 1M, 2M = 1 1M = 1 2 M = 1 ξ α ξ α, 24 ξα 1ξ α + 1ξ α ξ α, 25 ξα 2 ξ α + 1ξ α 1 ξ α + 2ξ α ξ α 16 u, λ u = ū + 1 u + 2 u +, λ = λ + 1 λ + 2 λ + 27 1, 2 1 2 23, 27 15 + 1 M + 2 M + ū + 1 u + 2 u + = λ + 1 λ + 2 λ + ū + 1 u + 2 u + 28 1 2 ū = λ ū 29 1 u + 1 M ū = λ 1 u + 1 λ ū 3 26 3 c 29 Information Processing Society of Japan

2u + 1M 1u + 2M ū = λ 2u + 1λ 1u + 2λ ū 31 12 ξ α, ū = 24 ū = 29 λ = 25 ū, 1 M ū = 3 ū 1λ = 3 1 u = 1 M ū 32 ū = ū P ū ū θ+ 1θ+ 2θ + 2 = 1 1 θ, 1 θ = 1 θ θ 32 31 2 λ 2λ = ū, 2M ū ū, 1 M 1 M ū ū, T ū = 33 ū, ū ū, ū T = 2M 1M 1M 34 2 2u ū ū 2 u ū 2 u = P ū 2 u = 2 u 35 31 32 2u = 2λ ū + 1M 1M ū 2M ū ū, T ū = ū, ū ū T ū 36 6. 32 u V [u] = E[ 1u 1u ] = E[ 1Mu 1Mu ] = 1 [ ] E ξ 2 α, u ξ α ξ β, u ξ β β=1 = 1 u, E[ ξ 2 α ξ β ]u ξ α ξ β 2 u, V [ξ α ]u ξ α ξ α, 37 = 1 ū, V [ξ α ]u ξ α ξ α 38 37 ξ α α E[ 1 ξ α 1 ξ β ] = δ αβ σ 2 V [ξ α ] δ αβ 37 V [u] Taubin V [u] 1 E[ 1 u] = 33 2 E[ 2u ] 34 T 26 E[ 2 M ] E[ 2 M ] = 1 ξα E[ 2 ξ α ] + E[ 1 ξ α 1 ξ α ] + E[ 2 ξ α ] ξ α ξα e 13 + V [ξ α ] + e 13 ξ α = σ 2 TB + 2S[ ξ c e 13] 2 22 ξ c, e 13 ξ c = 1 ξ α, e 13 = 1 1 4 S[ ] S[A] = A + A /2 E[ 1 M 1 M ] E[ 1M 1M ] tr[ V 2 [ξ α ]] ξ α ξ α + ξ α, ξα V [ξ α ] + 2S[V [ξ α ] ξα ξ α ] tr[ ] 39, 41 34 T E[T ] = σ 2 TB + 2S[ ξ c e 13] 1 2 +2S[V [ξ α ] ξα ξ α ] 39 41 tr[ V [ξ α ]] ξ α ξ α + ξ α, ξα V [ξ α ] 42 4 c 29 Information Processing Society of Japan

36 2u E[ 2 u ] = ū, E[T ]ū ū, ū ū E[T ]ū 7. 42 ξ c, ū =, ξ α, ū = E[T ]ū E[T ]ū = σ 2 TB ū + A + C ξ c 1 ξ 2 α, ξα V [ξ α ]ū +ū, V [ξ α ] ξα ξ α = I 2 E[ 2u ] E[ 2u ]= ū,e[t ]ūū E[T ]ū = I ūū E[T ]ū = E[T ]ū 45 I ūū = P ū = = 46 44, 45 2 E[ 2 u ] = σ 2 TB ū + A + C ξ c 1 ξ 2 α, ξα V [ξ α ]ū +ū, V [ξ α ] ξα ξ α 8. Taubin 44 ξ c, ū =, ξ α, ū = ū, E[T ]ū ū, E[T ]ū = σ 2 ū, TBū 1 ξ 2 α, ξα ū, V [ξ α ]ū = σ 2 ū, TB ū 1 2 tr[ ξα ξ α ]ū, V [ξ α ]ū = σ 2 ū, TB ū 1 tr[ ū, V 2 [ξ α ]ū ξ α ξ α ] 43 44 47 = σ 2 ū, TB ū σ2 tr[ ] 48 38 Taubin = TB Taubin 2 E[ 2 u ] = σ 2 q TB ū + A + C ξ c 1 2 +ū, V [ξ α ] ξα ξ α ξ α, ξα V [ξ α ]ū q = 1 tr[ ] 5 ū, TB ū 49 47 47 TBū q TBū 5 q < 1 Taubin 9. = TB + 2S[ ξ c e 13] 1 tr[ V [ξ 2 α ]] ξ α ξ α + ξ α, ξα V [ξ α ] +2S[V [ξ α ] ξα ξ α ] 42 E[T ] = σ 2 43 E[ 2 u ] = σ 2 ū, ū ū, ū ū = 52 51 ξ α, xα, ȳ α x α, y α 28 + 1 + 2 + 28 Oσ 2 1, 2 43 E[ 2u ] Oσ 4 2 1. 1a 1 31 1 5 x, y σ Taubin 49 51 5 c 29 Information Processing Society of Japan

u u u a b O 1 a 31 b σ =.5 1. 2. Taubin 3. 4. Chojnacki 4 FS 25 1b σ =.5 u ū u u ū u = P ūu 53 2a P ū I ūū ū 2b, c σ 1 B D B = 1 1 u a, D = 1 a=1 1 1 1 a=1 u a 2 54 u a a 2c KCR 12,14,15 D KCR = σ ξ ] tr[ α ξ α 55 ū, V [ξ α ]ū 15 17 Taubin TB 1 51 15 u = 1/λMu 56 14 M 2 λ 1 17 5 6 2 2 a b c a u ū u b, c 1a a b σ 1. 2. Taubin 3. 4. c KCR 5 λ λ u 2b Taubin 38 Taubin 2c Taubin 2 2b 38 15 2c 2b, c Taubin 3 155 Taubin Taubin 6 c 29 Information Processing Society of Japan

3 155 Taubin Taubin 11. 14,15 2 Taubin : C o. 215172 1 A. Albano, Representation of digitized contours in terms of conics and straight-line segments, Comput. Graphics Image Process., 3-1 1974-3, 23 33. 2,,,, 29-CVIM-166-5 29-3, 33 4. 3 F. J. Bookstein, Fitting conic sections to scattered data, Comput. Graphics Image Process., 9-1 1979-1, 56 71. 4 W. Chojnacki, M. J. Brooks, A. van den Hengel and D. Gawley, On the fitting of surfaces to data with covariances, IEEE Trans. Patt. Anal. Mach. Intell., 22-11 2-11, 1294 133. 5 D. B. Cooper and. Yalabik, On the computational cost of approximating and recognizing noise-perturbed straight lines and quadratic arcs in the plane, IEEE Trans. Computers, 25-1 1976-1, 12 132. 6 A. Fitzgibbon, M. Pilu and R. B. Fisher, Direct least square fitting of ellipses, IEEE Trans. Patt. Anal. Mach. Intell., 21-5 1999-5, 476 48. 7 W. Gander, H. Golub, and R. Strebel, Least-squares fitting of circles and ellipses, BIT, 34-4 1994-12, 558 578. 8 R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariable Observations, Wiley, ew Yori,.Y., U.S.A. 1977. 9 K. Kanatani, Geometric Computation for Machine Vision, Oxford University Press, Oxford, U.K., 1993. 1,,, 1995. 11,,, 36-8 1995-8, 1865 1873. 12 K. Kanatani, Statistical Optimization for Geometric Computation: Theory and Practice, Elsevier Science, Amsterdam, The etherlands, 1996; Dover, ew York, 25. 13, KCR,, 25-CVIM-147-8 25-1, 59 64. 14,,, 25-CVIM- 156-18 26-11, 147 154. 15 K. Kanatani, Statistical optimization for geometric fitting: Theoretical accuracy analysis and high order error analysis, Int. J. Comp. Vis. 8-2 28-11, 167 188. 16 Y. Leedan and P. Meer, Heteroscedastic regression in computer vision: Problems with bilinear constraint, Int. J. Comput. Vision., 37-2 2-6, 127 15. 17,,,,, 28-CVIM-162-1 28-3, 53 6. 18,,,, D-II, J85-D-II-12 22-12, 1823 1831. 19 K. A. Paton, Conic sections in chromosome analysis, Patt. Recog., 2-1 197-1, 39 4. 2 P. L. Rosin, A note on the least squares fitting of ellipses, Patt. Recog. Lett., 14-1 1993-1, 799-88. 21 [I],, 92-3 29-3, 229 233. 7 c 29 Information Processing Society of Japan

22 [II],, 92-4 29-4, 31 36. 23 G. Taubin, Estimation of planar curves, surfaces, and non-planar space curves defined by implicit equations with applications to edge and range image segmentation, IEEE Trans. Patt. Anal. Mach. Intell., 13-11 1991-11, 1115 1138. 24,,, 25-CVIM-151-15 25-11, 197 114. 25,,,, 26-CVIM-154-36 26-5, 339 346. E[ 1M 1M ] E[ 1M 1M ] = E[ 1 ξα 1 ξ 1 α + 1 ξ α ξ α = 1 2 = 1 2 + 1 ξ α ξ α = 1 2 ξβ 1 ξ β + 1 ξ β ξ β ] β=1 E[ ξ α 1 ξ α + 1 ξ α ξ α ξ β 1 ξ β + 1 ξ β ξ β ] E[ ξ α 1 ξ ξβ α 1 ξ β + ξ α 1 ξ α 1 ξ β ξ β + 1 ξ ξβ α ξ α 1 ξ β 1 ξ β ξ β ] E[ ξ α 1 ξ α, ξβ 1 ξ β + ξ α 1 ξ α, 1 ξ β ξ β + 1 ξ α ξ α, ξβ 1 ξ β + 1 ξ α ξ α, 1 ξ β ξ β ] = 1 E[ 1ξ 2 α, ξβ ξ α 1ξ β + 1ξ α, 1ξ β ξ α ξ β + ξ α, ξβ 1 ξ α 1 ξ β + 1 ξ α 1 ξ β, ξ α ξ β ] = 1 E[ ξ 2 α ξβ 1 ξ α 1 ξ β + tr[ 1 ξ β 1 ξ α ] ξ α ξ β = 1 2 + ξ α, ξβ 1ξ α 1ξ β + 1ξ α 1ξ ξα β ξ β ] ξα ξ β E[ 1 ξ α 1 ξ β ] + tr[ E[ 1 ξ β 1 ξ α ]] ξ α ξ β + ξ α, ξβ E[ 1 ξ α 1 ξ β ] + E[ 1ξ α 1 ξ β ] ξα ξ β 2 +δ αβ V [ξ α ] 2 2 ξα ξ β ξα ξ α δ αβ V [ξ α ]+tr[ δ αβ V [ξ α ]] ξ α ξ β + ξ α, ξβ δ αβ V [ξ α ] ξα ξ β V [ξ α ] + tr[ V [ξ α ]] ξ α ξ α + ξ α, ξα V [ξ α ] +V [ξ α ] ξα ξ α tr[ V [ξ α ]] ξ α ξ α + ξ α, ξα V [ξ α ] + 2S[V [ξ α ] ξα ξ α ] 57 8 c 29 Information Processing Society of Japan