,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

Size: px
Start display at page:

Download ",.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw"

Transcription

1 ,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukawa.m.aa@m.titech.ac.jp, , mirai@ism.ac.jp 1

2 1.1.2, itunes, Amazon, Netflix.,,,.,,.,,., : m n, 5. 1,. m n. m = 3, n = 5 : V = a b c d e A 2 5? 4 1 B 1? (1) C? 1 4? 5 V,., A b 5, c.,?. (1), A B., A B., b A 5, B.,,...,, 3 (Su and Khoshgoftaar, 2009).,,,.,..,., Pearson.,,.,,.,,.,.. 1, 2

3 .,, V (R {?}) m n.?,., V ij =? V ij. Candés and Recht (2009) V V. : minimize rank(x) subject to X ij = V ij ((i, j) Ω). (2), X R m n V. Ω, Ω = {(i, j) : V ij R}. (2), l 0, NP., (2). (SDP)., SDP., SDP,. Olsson and Oskarsson (2009); Gillis and Glineur (2011), V, : m n minimize W ij (X ij V ij ) 2 i=1 j=1 subject to rank(x) r. W {0, 1} m n, W ij = 1 V ij R, W ij = 0. Ω = {(i, j) : V ij R} = {(i, j) : W ij = 1}, (3) : minimize (X ij V ij ) 2 (i,j) Ω (4) subject to rank(x) r. Ω. Olsson and Oskarsson (2009) (3). Gillis and Glineur (2011) (3) (4) NP. (3) 3

4 ,., Ω, (4) : minimize X V 2 F subject to rank(x) r., V., r l=1 σ lp l q l (Trefethen and Bau, 1997, Theorem 5.9). σ l, p l, q l V l. V., O(min{m 2 n, mn 2 }),., r, r..,. 1,,, (Sarwar et al., 2000). : 1. V,,. ˆV., (i, j) Ω ˆV ij = (1/ {i : (i, j) Ω} ) i :(i,j) Ω V i j. 2. µ. µ i µ i V i., µ i = (1/ {j : (i, j) Ω} ) j:(i,j) Ω V ij. 3., ˆV µ1 r V r V V r + µ : 2. 3 NP. (4), NP.,,. 4,.,

5 2,., X R m n V (R {?}) m n. V X.. X, L X U. L (R { }) m n, U (R {+ }) m n L U,., L X i, j L ij X ij.,,., Amazon 1 5., L, U.., (i, j) V ij δ, L ij = V ij δ, U ij = V ij + δ.,., Y R m n, Y., X Y 2 Frobenius X Y 2 F., : minimize X Y 2 F + λ subject to rank(x) r, L Y U. (i,j) Ω (Y ij V ij ) 2 λ 2. λ,, V Y. λ,, V, 2 Y. (5) 3 NP (5) NP., : 1. V ([0, 1] {?}) m n r = 1, (5), 2 12 (mn) 7 NP., : 5

6 2 (Gillis and Glineur (2011, Theorem 1.2)). V ([0, 1] {?}) m n r = 1, (4), 2 12 (mn) 7 NP. Proof of Theorem 1. (5), (i, j) Ω L ij = U ij = V ij, (i, j) / Ω L ij = U ij = +., (i, j) Ω Y ij = V ij, 0. (i,j) Ω (X ij V ij ) 2 + (i,j) Ω (X ij Y ij ) 2., (i, j) Ω Y ij X ij, 0., (4)., (4) (5).., (5) NP r (Gillis and Glineur, 2011, Remark 3), 1 r. 4, (5). : f 0 (X, Y ) = X Y 2 F + λ (Y ij V ij ) 2, (i,j) Ω f 1 (X) = ι(rank(x) r), f 2 (Y ) = ι(l Y U), f(x, Y ) = f 0 (X, Y ) + f 1 (X) + f 2 (Y ), ι., rank(x) r f 1 (X) = 0; f 1 (X) = +. f(x, Y ) (5)., f(x, Y ) X Y. f(x, Y ) (5) (X (0), Y (0) ) dom f 1 dom f 2. for k = 0, 1, 2,... ( ): X (k+1) = argmin X f(x, Y (k) ). Y (k+1) = argmin Y f(x (k+1), Y ). X, X (k+1) Y (k) r., X (k+1) 6

7 : minimize X Y (k) 2 F subject to rank(x) r., Y (k). Y. Y : minimize X (k+1) Y 2 F + λ (Y ij V ij ) 2 subject to L Y U. (i,j) Ω., 1 2., (i, j) Ω, (i, j) Ω minimize (1 + λ)yij 2 2(X(k+1) ij + λv ij )Y ij subject to L ij Y ij U ij minimize Yij 2 2X(k+1) ij subject to L ij Y ij U ij. : L ij (A ij L ij ), Y (k+1) ij = A ij (L ij < A ij < U ij ), U ij (U ij A ij ). A ij = X (k+1) ij X (k+1) 1 + λ + λv ij Y ij ((i, j) Ω), ij ((i, j) Ω)., (6), O(mn). 1, f., 2, Tseng (2001) ( X, Ȳ ) f. 2, ( X, Ȳ ) dom f = {(X, Y ) : f(x, Y ) < + } (6) f ( X, Ȳ ; X, Y ) 0 ( ( X, Y )). f ( X, Ȳ ; X, Y ) ( X, Ȳ ), ( X, Y ) f,, f ( X, Ȳ ; X, Y ) = lim inf f( X + X, Ȳ + Y ) f( X, Ȳ ) 7

8 . f.,. 3. {(X (k), Y (k) )} 1, L = {(X, Y ) : f(x, Y ) f(x (0), Y (0) )}., {(X (k), Y (k) )} 1., f.,. 1. dom f. Proof., dom f = dom f 1 dom f 2 dom f 2., dom f 1. X dom f 1., r X σ r (X). E 2 < σ r (X) E. Golub and van Loan (2013, Corollary 8.6.2), X + E dom f 1, l = 1,..., r σ l (X + E) σ l (X) E 2 > 0. dom f Tseng (2001, Sections 3 and 4). 3., {(X (k), Y (k) )} L dom f., {(X (k), Y (k) )}. 1 dom f, {(X (k), Y (k) )} dom f 1. {(X (kj), Y (kj) )}, ( X, Ȳ ) {(X(k), Y (k) )}. ( X, Ȳ ), ( X, Ȳ ) dom f, ( X, Y ) f ( X, Ȳ ; X, Y ) 0., f(x (kj+1), Y (kj+1) ) f(x (kj+1), Y (kj) ) f(x, Y (kj) ) ( X). f dom f, j f( X, Ȳ ) f(x, Ȳ ) ( X) (7)., f(x (k j), Y (k j) ) f(x (k j), Y ) ( Y ) j f( X, Ȳ ) f( X, Y ) ( Y ) (8). f 0, ( X, Y ) : f ( X, Ȳ ; X, Y ) = f 0 ( X, Ȳ ), ( X, Y ) + lim inf ( f1 ( X + X) f 1 ( X) + f 2(Ȳ + Y ) f 2(Ȳ ) ) 8

9 X f 0 ( X, Ȳ ), X + Y f 0 ( X, Ȳ ), Y + lim inf f 1 ( X + X) f 1 ( X) + lim inf f 2 (Ȳ + Y ) f 2(Ȳ ) = X f 0 ( X, Ȳ ), X + Y f 0 ( X, Ȳ ), Y + f 1( X; X) + f 2(Ȳ ; Y ) f( = lim inf X + X, Ȳ ) f( X, Ȳ ) f( X, Ȳ + Y ) f( X, Ȳ ) + lim inf 0., (7) (8). 2. L = {(X, Y ) : f(x, Y ) f(x (0), Y (0) )},, i, j L ij > U ij < +. 3., Y. Y,., Y Y,. 5,. OS MacOS Sierra , CPU Intel Core m3 1.1 GHz, RAM 8 GB. MATLAB (R2017b).., rank(a) = 10 i, j 0.5 A ij 5.5 A R :, 2 B R 20 9, C R , 0.5 A ij 5.5. A Āij {1, 2,..., 5}, 80%. V., r r = 10, λ λ = 1., 4. SKKR V Sarwar et al. (2000),. perturb + SKKR V Sarwar et al. (2000),. low rank rand A. rand ,. 9

10 objective value objective value SKKR perturb + SKKR low rank rand rand iteration number 1: 0.8 perturb + SKKR low rank rand rand 2: SKKR 1, perturb + SKKR, low rank rand, and rand 10,. 1.,. 1, perturb + SKKR low rank rand, SKKR., rand. 2.., , SKKR. 2, perturb + SKKR low rank rand, SKKR. rand, SKKR. 6,..,.,,.,.,,.,, r λ,.. 10

11 REFERENCES Candés, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6): Gillis, N. and Glineur, F. (2011). Low-rank matrix approximation with weights or missing data is NP-hard. SIAM Journal on Matrix Analysis and Applications, 32(4): Golub, G. H. and van Loan, C. F. (2013). Matrix Computations. The Johns Hopkins University Press, fourth edition. Ilin, A. and Raiko, T. (2010). Practical approaches to principal component analysis in the presence of missing values. Journal of Machine Learning Research, 11(Jul): Olsson, C. and Oskarsson, M. (2009). A convex approach to low rank matrix approximation with missing data. In Salberg, A.-B., Hardeberg, J. Y., and Jenssen, R., editors, Proceedings of the 16th Scandinavian Conference on Image Analysis (SCIA 09), pages Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Application of dimensionality reduction in recommender system a case study. In Kohavi, R., Masand, B., Spiliopoulou, M., and Srivastava, J., editors, Proceedings of the ACM WEBKDD 2000 Workshop. Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009(421425):1 19. Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society. Series B, 61(3): Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM. Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109(3):

icml10yomikai.key

icml10yomikai.key A Fast Augmented Lagrangian Algorithm for Learning Low- Rank Matrices Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama, Hisashi Kashima 2010/8/18 ICML2010 1 Matrix completion [Srebro et al. 05; Abernethy

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

橡固有値セミナー2_棚橋改.PDF

橡固有値セミナー2_棚橋改.PDF 1 II. 2003 5 14 2... Arnoldi. Lanczos. Jacobi-Davidson . 3 4 Ax = x A A Ax = Mx M: M 5 Householder ln ln-1 0 l3 0 l2 l1 6 Lanczos Lanczos, 1950 Arnoldi Arnoldi, 1951 Hessenberg Jacobi-Davidson Sleijpen

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

untitled

untitled ( œ ) œ 2,000,000 20. 4. 1 25. 3.27 44,886,350 39,933,174 4,953,176 9,393,543 4,953,012 153,012 4,800,000 164 164 4,001,324 2,899,583 254,074 847,667 5,392,219 584,884 7,335 4,800,000 153,012 4,800,000

More information

Webマーケティングの 目 的 施 策 代 表 的 な 手 法 Customer Attention Computational Advertisement Logistic Regression Customer Retention Loyalty Program Matrix Factoriza

Webマーケティングの 目 的 施 策 代 表 的 な 手 法 Customer Attention Computational Advertisement Logistic Regression Customer Retention Loyalty Program Matrix Factoriza Web A Survey of Sparse data Handling on Web Marketing Data 1 1 Takumi Uchida 1 Kenichi Yoshida 1 1 1 3-29-1 Abstract: Web marketing is one of the important company activities. Here, its data is often high

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

(2012 rev.1.23) Web DVD 1 1 DVD SF DVD ( ) ( ) ( ) DVD 0.2 ( ) ( ) ( ) amazon.com (MovieLens) (Resnick et al., 1994) 1

(2012 rev.1.23) Web DVD 1 1 DVD SF DVD ( ) ( ) ( ) DVD 0.2 ( ) ( ) ( ) amazon.com (MovieLens) (Resnick et al., 1994) 1 (2012 rev.1.23) 0 0.1 Web DVD 1 1 DVD SF DVD ( ) ( ) ( ) DVD 0.2 ( ) ( ) ( ) amazon.com 1600 4000 5 (MovieLens) (Resnick et al., 1994) 1 0.3 optional 1 ( ) ( ) ( ) java java eclipse javadoc api ( ) 0.4

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

untitled

untitled 1 1 Ax = b A R m m A b R m x R m A shift-and invert Lanczos - LU CG A = LU LU Ly = b Ux = y A LU A A = LL T 1 LU b,, Vol. 11, No. 4, pp. 14 18 (2006). x * x (0), x (1), x (2), A Ap A # x (n+1) = Cx (n)

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

離散最適化基礎論 第 11回  組合せ最適化と半正定値計画法 11 okamotoy@uec.ac.jp 2019 1 25 2019 1 25 10:59 ( ) (11) 2019 1 25 1 / 38 1 (10/5) 2 (1) (10/12) 3 (2) (10/19) 4 (3) (10/26) (11/2) 5 (1) (11/9) 6 (11/16) 7 (11/23) (11/30) (12/7) ( ) (11) 2019 1 25 2

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

untitled

untitled 24 591324 25 0101 0002 0101 0005 0101 0009 0101 0012 0101 0013 0101 0015 0101 0029 0101 0031 0101 0036 0101 0040 0101 0041 0101 0053 0101 0055 0101 0061 0101 0062 0101 0004 0101 0006 0101 0008 0101 0012

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000 ( ) 73 10,905,238 3,853,235 295,309 1,415,972 5,340,722 2,390,603 890,603 1,500,000 1,000,000 300,000 1,500,000 49 19. 3. 1 17,172,842 3,917,488 13,255,354 10,760,078 (550) 555,000 600,000 600,000 12,100,000

More information

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a =

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a = 3 4 MATLAB 3 4. A, B R 3 3 2 3 4 5 6 7 8 9, B = mat_a, mat_b >> mat_a = [-, -2, -3; -4, -5, -6; -7, -8, -9] 9 8 7 6 5 4 3 2 mat_a = - -2-3 -4-5 -6-7 -8-9 >> mat_b = [-9, -8, -7; -6, -5, -4; -3, -2, -]

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366 ( š ) 557,319,095 2,606,960 31,296,746,858 7,615,089,278 2,093,641,212 6,544,698,759 936,080 3,164,967,811 20. 3.28 178,639,037 48,288,439 170,045,571 123,059,601 46,985,970 55,580,709 56,883,178 19. 4.20

More information

TA3-4 31st Fuzzy System Symposium (Chofu, September 2-4, 2015) Interactive Recommendation System LeonardoKen Orihara, 1 Tomonori Hashiyama, 1

TA3-4 31st Fuzzy System Symposium (Chofu, September 2-4, 2015) Interactive Recommendation System LeonardoKen Orihara, 1 Tomonori Hashiyama, 1 Interactive Recommendation System 1 1 1 1 LeonardoKen Orihara, 1 Tomonori Hashiyama, 1 Shun ichi Tano 1 1 Graduate School of Information Systems, The University of Electro-Communications Abstract: The

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a 9 8 m n mn N.J.Nigham, Accuracy and Stability of Numerical Algorithms 2nd ed., (SIAM) x x = x2 + y 2 = x + y = max( x, y ) x y x () (norm) (condition number) 8. R C a, b C a b 0 a, b a = a 0 0 0 n C n

More information

untitled

untitled š ( ) 200,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 120,000 240,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000 120,000 60,000 100,000 100,000 60,000 200,000

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

独立行政法人情報通信研究機構 Development of the Information Analysis System WISDOM KIDAWARA Yutaka NICT Knowledge Clustered Group researched and developed the infor

独立行政法人情報通信研究機構 Development of the Information Analysis System WISDOM KIDAWARA Yutaka NICT Knowledge Clustered Group researched and developed the infor 独立行政法人情報通信研究機構 KIDAWARA Yutaka NICT Knowledge Clustered Group researched and developed the information analysis system WISDOM as a research result of the second medium-term plan. WISDOM has functions that

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

(

( 2 Web http://mybook-pub-site.sakura.ne.jp/statistics Multivariate/index.html 1 2 1 2.1................................. 1 2.2 (............... 8 2.2.1................... 9 2.2.2.................. 12 2.2.3..............

More information

The 18th Game Programming Workshop ,a) 1,b) 1,c) 2,d) 1,e) 1,f) Adapting One-Player Mahjong Players to Four-Player Mahjong

The 18th Game Programming Workshop ,a) 1,b) 1,c) 2,d) 1,e) 1,f) Adapting One-Player Mahjong Players to Four-Player Mahjong 1 4 1,a) 1,b) 1,c) 2,d) 1,e) 1,f) 4 1 1 4 1 4 4 1 4 Adapting One-Player Mahjong Players to Four-Player Mahjong by Recognizing Folding Situations Naoki Mizukami 1,a) Ryotaro Nakahari 1,b) Akira Ura 1,c)

More information

IPSJ SIG Technical Report Vol.2017-CSEC-77 No.11 Vol.2017-IOT-37 No /5/26 1,a) CPU Server Anomaly Detection by Sparse Structure Learning

IPSJ SIG Technical Report Vol.2017-CSEC-77 No.11 Vol.2017-IOT-37 No /5/26 1,a) CPU Server Anomaly Detection by Sparse Structure Learning ,a) CPU Server Anomaly Detection by Sparse Structure Learning Koizumi Seiji,a) Masaki Samejima Yusuke Sugano Yasuyuki Matsushita Abstract: This paper addresses automatic anomaly detection on servers in

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

Vol.58 No (Sep. 2017) 1 2,a) 3 1,b) , A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Poi

Vol.58 No (Sep. 2017) 1 2,a) 3 1,b) , A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Poi 1 2,a) 3 1,b) 2017 1 17, 2017 6 6 A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Points and Students Reasons for Application Teppei Sakamoto 1 Haruka Yamashita 2,a) Tairiku

More information

24 [11] [4, 8, 10, 20, 21] CreditMetrics [8] CreditMetrics CreditMetrics CreditMetrics [13] [1, 12, 16, 17] [12] [1] Conditional Value-at-Risk C

24 [11] [4, 8, 10, 20, 21] CreditMetrics [8] CreditMetrics CreditMetrics CreditMetrics [13] [1, 12, 16, 17] [12] [1] Conditional Value-at-Risk C Transactions of the Operations Research Society of Japan Vol. 54, 2011, pp. 23 42 c CVaR 1 FT ( 2009 2 12 ; 2010 10 26 ) Conditional Value-at-Risk 10 7 50 35 : Conditional Value-at-Risk 1. BIS [3] structuralreduced

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2 FFT 1 Fourier fast Fourier transform FFT FFT FFT 1 FFT FFT 2 Fourier 2.1 Fourier FFT Fourier discrete Fourier transform DFT DFT n 1 y k = j=0 x j ω jk n, 0 k n 1 (1) x j y k ω n = e 2πi/n i = 1 (1) n DFT

More information

untitled

untitled A = QΛQ T A n n Λ Q A = XΛX 1 A n n Λ X GPGPU A 3 T Q T AQ = T (Q: ) T u i = λ i u i T {λ i } {u i } QR MR 3 v i = Q u i A {v i } A n = 9000 Quad Core Xeon 2 LAPACK (4/3) n 3 O(n 2 ) O(n 3 ) A {v i }

More information

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ 80 80 80 3 3 5 8 10 12 14 14 17 22 24 27 33 35 35 37 38 41 43 46 47 50 50 52 54 56 56 59 62 65 67 71 74 74 76 80 83 83 84 87 91 91 92 95 96 98 98 101 104 107 107 109 110 111 111 113 115

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

6 ( ) 1 / 53

6 ( ) 1 / 53 6 / 6 (2014 11 05 ) / 53 6 (2014 11 05 ) 1 / 53 nodeedge 2 u v u v (u, v) 6 (2014 11 05 ) 2 / 53 Twitter 6 (2014 11 05 ) 3 / 53 Facebook 6 (2014 11 05 ) 4 / 53 N N N 1,2,..., N (i, j )i j 10 i j 2(i, j

More information

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N RMT 1 1 1 N L Q=L/N (RMT), RMT,,,., Box-Muller, 3.,. Testing Randomness by Means of RMT Formula Xin Yang, 1 Ryota Itoi 1 and Mieko Tanaka-Yamawaki 1 Random matrix theory derives, at the limit of both dimension

More information

untitled

untitled ( œ ) œ 138,800 17 171,000 60,000 16,000 252,500 405,400 24,000 22 95,800 24 46,000 16,000 16,000 273,000 19,000 10,300 57,800 1,118,408,500 1,118,299,000 109,500 102,821,836 75,895,167 244,622 3,725,214

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

第8章 位相最適化問題

第8章 位相最適化問題 8 February 25, 2009 1 (topology optimizaiton problem) ( ) H 1 2 2.1 ( ) V S χ S : V {0, 1} S (characteristic function) (indicator function) 1 (x S ) χ S (x) = 0 (x S ) 2.1 ( ) Lipschitz D R d χ Ω (Ω D)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

:EM,,. 4 EM. EM Finch, (AIC)., ( ), ( ), Web,,.,., [1].,. 2010,,,, 5 [2]., 16,000.,..,,. (,, )..,,. (socio-dynamics) [3, 4]. Weidlich Haag.

:EM,,. 4 EM. EM Finch, (AIC)., ( ), ( ), Web,,.,., [1].,. 2010,,,, 5 [2]., 16,000.,..,,. (,, )..,,. (socio-dynamics) [3, 4]. Weidlich Haag. :EM,,. 4 EM. EM Finch, (AIC)., ( ), ( ),. 1. 1990. Web,,.,., [1].,. 2010,,,, 5 [2]., 16,000.,..,,. (,, )..,,. (socio-dynamics) [3, 4]. Weidlich Haag. [5]. 606-8501,, TEL:075-753-5515, FAX:075-753-4919,

More information

johnny-paper2nd.dvi

johnny-paper2nd.dvi 13 The Rational Trading by Using Economic Fundamentals AOSHIMA Kentaro 14 2 26 ( ) : : : The Rational Trading by Using Economic Fundamentals AOSHIMA Kentaro abstract: Recently Artificial Markets on which

More information

fiš„v8.dvi

fiš„v8.dvi (2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; fuji@ism.ac.jp 2 106 8569 4 6 7; nakanoj@ism.ac.jp

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

š ( š ) 2,973,655 3,774,545 4,719,254 1,594,319 3,011,432 1,517,982 1,493, ,503 2,591, , , , , ,000 f21 500,000 24

š ( š ) 2,973,655 3,774,545 4,719,254 1,594,319 3,011,432 1,517,982 1,493, ,503 2,591, , , , , ,000 f21 500,000 24 š ( š ) 812,488 8,633,171 390,374,410 324,279,452 9,953,269 17,329,976 2,944,796 2,944,796 6,866,917 341,279,452 12,000,000 12,000,000 2,000,000 2,000,000 1,000,000 1,000,000 500,000 600,000 I 1,000,000

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

bc0710_010_015.indd

bc0710_010_015.indd Case Study.01 Case Study.02 30 Case Study.05 Case Study.03 Case Study.04 Case Study.06 Case Study.07 Case Study.08 Case Study.21 Case Study.22 Case Study.24 Case Study.23 Case Study.25 Case Study.26

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

DEIM Forum 2019 H2-2 SuperSQL SuperSQL SQL SuperSQL Web SuperSQL DBMS Pi

DEIM Forum 2019 H2-2 SuperSQL SuperSQL SQL SuperSQL Web SuperSQL DBMS Pi DEIM Forum 2019 H2-2 SuperSQL 223 8522 3 14 1 E-mail: {terui,goto}@db.ics.keio.ac.jp, toyama@ics.keio.ac.jp SuperSQL SQL SuperSQL Web SuperSQL DBMS PipelineDB SuperSQL Web Web 1 SQL SuperSQL HTML SuperSQL

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

官報(号外第196号)

官報(号外第196号) ( ) ( ) š J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 12 13. 3.30 23,850,358,060 7,943,090,274 15,907,267,786 17,481,184,592 (354,006) 1,120,988,000 4,350,000 100,000 930,000 3,320,000

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1 Vol. 44 No. SIG 9(CVIM 7) July 2003, Robby T. Tan, 1 Estimating Illumination Position, Color and Surface Reflectance Properties from a Single Image Kenji Hara,, Robby T. Tan, Ko Nishino, Atsushi Nakazawa,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

N M kb 1 1% 1 kb N M N M N + M ez43-rf2 N M M N/( N) 2 3 WSN Donoho Candès [6], [7] N x x N s x N N Ψ (1) x = Ψs (1) s x s K x

N M kb 1 1% 1 kb N M N M N + M ez43-rf2 N M M N/( N) 2 3 WSN Donoho Candès [6], [7] N x x N s x N N Ψ (1) x = Ψs (1) s x s K x Vol.212-HCI-1 No.2 Vol.212-UBI-36 No.2 212/11/2 1 1,2 1 N M N + M ez43-rf2 N M M N/(1 + 2.82 1 3 N) 1. (WSN) Sink WSN WSN WSN 1 Graduate School of Information Science and Technology, The University of

More information

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + ( ) : ( ) n, n., = 2+2+,, = 2 + 2 + = 2 + + 2 = + 2 + 2,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n,

More information

(note-02) Rademacher 1/57

(note-02) Rademacher 1/57 (note-02) Rademacher 1/57 (x 1, y 1 ),..., (x n, y n ) X Y f : X Y Y = R f Y = {+1, 1}, {1, 2,..., G} f x y 1. (x 1, y 1 ),..., (x n, y n ) f(x i ) ( ) 2. x f(x) Y 2/57 (x, y) f(x) f(x) y (, loss) l(f(x),

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

untitled

untitled š ( œ ) 4,000,000 52. 9.30 j 19,373,160 13. 4. 1 j 1,400,000 15. 9.24 i 2,000,000 20. 4. 1 22. 5.31 18,914,932 6,667,668 12,247,264 13,835,519 565,000 565,000 11,677,790 11,449,790 228,000 4,474 4,474

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Ÿ ( Ÿ ) Ÿ šœš 100,000 10,000,000 10,000,000 3,250,000 1,000,000 24,350,000 5,000,000 2,500,000 1,200,000 1,000,000 2,960,000 7,000,000 1,500,000 2,200

Ÿ ( Ÿ ) Ÿ šœš 100,000 10,000,000 10,000,000 3,250,000 1,000,000 24,350,000 5,000,000 2,500,000 1,200,000 1,000,000 2,960,000 7,000,000 1,500,000 2,200 šœ Ÿ ( Ÿ ) Ÿ 3,658,819,708 612,940,933 1,441,054,976 1,536,693,282 369,033,491 1,167,659,791 68,105,057 25,460 7,803,540,263 1,713,934,550 541,531,413 702,848,302 11,827 1,552,629,488 23,421,737,374 2,572,144,704

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information