Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Similar documents
Mathematical Logic I 12 Contents I Zorn

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

プログラム

日本内科学会雑誌第102巻第4号

: , 2.0, 3.0, 2.0, (%) ( 2.

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

; Modus Ponens 1

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

第86回日本感染症学会総会学術集会後抄録(I)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

Gmech08.dvi

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

( ) Loewner SLE 13 February

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


all.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

基礎数学I

ユニセフ表紙_CS6_三.indd

A

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D 24 D D D

tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


本文/目次(裏白)

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

2000年度『数学展望 I』講義録

6.1 (P (P (P (P (P (P (, P (, P.

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


I: 2 : 3 +

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Dynkin Serre Weyl

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

untitled

solutionJIS.dvi

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

6.1 (P (P (P (P (P (P (, P (, P.101

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1.1 1 A

°ÌÁê¿ô³ØII

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

Microsoft Word - 信号処理3.doc

Lecture 12. Properties of Expanders


1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

−g”U›ß™ö‡Æ…X…y…N…g…‰

Morse ( ) 2014

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1

ohpmain.dvi

ユニセフ表紙_CS6_三.indd

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m


1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

v er.1/ c /(21)


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

DVIOUT

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

(note-02) Rademacher 1/57

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

nsg02-13/ky045059301600033210

201711grade1ouyou.pdf

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

Ł\”ƒ-2005

2


73


第90回日本感染症学会学術講演会抄録(I)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Untitled

Transcription:

Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise 3 ((X) (Y )) ( (Z)) Remark 4 (, ) X Y Z X Y Z X Y Z A A X, Y,... true( 1) false 0 A and or (not) { 1 X = 1 and Y = 1 A X Y A = 0 otherwise 2 X Y 0 0 0 0 0 1 1 0 0 1 1 1,, 2

X Y 0 0 0 0 1 1 1 1 0 1 1 1, X 1 0 0 1, X Y 0 1 0 0 1 1 1 0 0 1 1 1 0, 1 0, 1 (X Y ) Z (X Y ) Z 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 Definition 5 X,Y,... ϕ ϕ (tautology) X ( X) Exercise 6 ( ( X)) (X) Remark 7 Remark 8 X, Y,.. 3

3 3.1 L,L,... x,y,z,x 0,x 1,...,,,,, = (,),[,] Definition 9 ( ) L L 0. L L 1. t 1,..., t n L F L n F (t 1,..., t n ) L 2. L 2 Example 10 L = {c, F } c F x, c, F (x, c), F (x, F (x, c)), F (F (x, c), F (x, c)),... L Definition 11 ( ) 1. t s L t = s L 4

2. t 1,..., t n L P L n P (t 1,..., t n ) L Example 12 L = {c, F, < } c F < 1. F (x, c) = y, 2. F (x, y) < F (F (x, y), c) L t x 1,..., x n t t(x 1,..., x n ) x 1,..., x n t F (x, c) t t t(x) t(x, y) Definition 13 ( ) L L L- 0. L L 1. ϕ, ψ L x (ϕ), (ϕ) (ψ), (ϕ) (ψ), (ϕ) (ψ), x(ϕ), x(ϕ) L L- ϕ x x x x x ϕ ( x(f (x, y) = x)) (F (x, x) = z) x x x ϕ x 1,..., x n ϕ ϕ(x 1,.., x n ) ϕ n Definition 14 ϕ ϕ 5

3.2 1, 3.3 A X,Y,... L Example 15 X ( X) ( x)(x = x) L X ( x)(x = x) ( ( x(x = x))) X ( x)p (x) ( x)p (x) ( ( x)p (x)) 1 1 + 1 = 2 6

Remark 16 Remark 17 X, Y,.. L 3.4 Definition 18 ϕ x x ϕ x x ϕ x x ϕ x ϕ Example 19 1. ( x)(x = y) x y 2. [( x)(x = x)] [( y)(x = y)] x x x x 2, 1. ( x)(ϕ ψ) (ϕ ( x)ψ) ϕ x 7

2. ( x)ϕ(x, y,...) ϕ(t, y,...) t t ϕ(t, y,...) Remark 20 1,2 x y, z,... x x 1 ϕ x x(x = 1 x = 1) (x = 1 x(x = 1) x = 1 y z 1 2 x t ϕ(x) ( y)[x = y] ( x)ϕ(x) ϕ(x) x y + 1 ( y)[y + 1 = y] 3.5 = x, y t(u 0,..., u n ) u 0,..., u n ϕ(u 0,..., u n ) u 0,..., u n 1. x = x; 2. x = y t(x, u 1,..., u n ) = t(x, u 1,..., u n ); 8

3. x = y [ϕ(x, u 1,..., u n ) ϕ(y, u 1,..., u n )]. Exercise 21 3 ϕ x = y [( y)(x = y + 1) ( y)(y = y + 1)] 4 1. (Modus Ponens) ϕ ϕ ψ ψ 2. (Generalization) ϕ ( x)ϕ Definition 22 ϕ 0,..., ϕ n i n ϕ i 1. ϕ i 2. ϕ i ϕ j ϕ i xϕ j (j < i) 3. ϕ i ϕ j ϕ k Modus Ponens ϕ k ϕ j ϕ i j, k < i ψ ψ Example 23 L P P (x) ( y)p (y) ( y)p (y) y( P (y)) P (x) y( P (y)) y( P (y)) P (x) (X Y ) (Y X) X y( P (y)), Y P (y) ( y( P (y)) P (x)) (P (x) y( P (y)) Modus Ponens P (x) y( P (y)) 9

Remark 24 ϕ ψ ψ θ ϕ θ ϕ ψ ψ θ ϕ θ (ϕ ψ) [(ψ θ) (ϕ θ)] tautology ϕ ψ Modus Ponens (ψ θ) (ϕ θ) ψ θ Modus Ponens ϕ θ Exercise 25 xp (x) yp (y) ϕ ϕ ϕ ϕ 1. ϕ ϕ ψ ψ; 2. ϕ ( x)ϕ Definition 26 ( ) Γ ϕ ϕ 0,..., ϕ n Γ ϕ i n ϕ i 10

1. ϕ i 2. ϕ i Γ 3. ϕ i ϕ j ϕ i xϕ j (j < i) 4. ϕ i ϕ j ϕ k Modus Ponens ϕ k ϕ j ϕ i j, k < i Γ ϕ Γ ϕ Remark 27 ϕ Γ = Γ ϕ Γ ϕ Γ Γ 0 Γ 0 ϕ Γ ϕ ϕ Γ ϕ 0,..., ϕ n, ϕ Γ Γ 0 Lemma 28 Γ {ϕ} θ Γ ϕ θ Proof : Γ ϕ θ ϕ 0,..., ϕ n, (ϕ θ) ϕ, ϕ 0,..., ϕ n, (ϕ θ), θ Γ {ϕ} θ : Γ {ϕ} θ n n = 1 θ θ Γ {ϕ} θ Γ ϕ θ Γ θ ϕ ϕ θ ϕ ϕ Γ n + 1 Modus Ponens ψ ψ θ θ Γ {ϕ} Γ ϕ ψ, Γ ϕ (ψ θ). (ϕ ψ) ((ϕ (ψ θ)) (ϕ θ)) Modus Ponens Γ ϕ θ Generalization θ xψ ψ x ψ 11

ψ n Γ ϕ ψ Generalization Γ x(ϕ ψ) ϕ x(ϕ ψ) (ϕ xψ) Modus Ponens Γ ϕ xψ Proposition 29 Γ ϕ(x) c Γ Γ ϕ(c) Γ ( x)ϕ(x) Proof Γ ϕ(x) Γ ( x)ϕ(x) Γ ϕ(c) Γ ϕ(x) Γ Case 0. - ϕ(c) Γ Γ c ϕ(x) ϕ(c) ϕ(x) Γ generalization Γ ( x)ϕ(x) - ϕ(c), = ϕ(x) Case 1. - Modus Ponens ψ(c) Γ ψ(c) ϕ(c), Γ ψ(c) Γ ψ(x), Γ ψ(x) ϕ(x) Modus Ponens Γ ϕ(x) - Generalization ϕ(x) ( y)ψ(x, y) ψ(c, y) ( y)ψ(c, y) Γ ψ(c, y) Γ ψ(x, y) Generalization Γ ( y)ψ(x, y) Exercise 30 c Γ ϕ 0 (c),..., ϕ n (c) Γ ϕ 0 (x),..., ϕ n (x) Γ x 5 α,β.... 12

Definition 31 L = {c i : i < α} {F i : i < β} {P i : i < γ} c i F i m i P i n i (M; {c M i } i<α, {Fi M } i<β, {Pi M } i<γ ) L- c M i 1. M 2. c M i M (i < α) 3. F M i M m i M (i < β) 4. P M i M n i (i < γ) c i M Fi M F i Pi M P i M Remark 32 1. < {(x, y) R : x < y} 2. M R (R, 0., 1, +, ) (R, 0, 1, +,, <) 3. L = {0, 1, +, } R L- + L- 13

L t t M t Definition 33 ( ) M L- L t(x 1,..., x n ) a 1,..., a n M t a 1,..., a n t M (a 1,..., a n ) : 0. (a) t x i t M (a 1,..., a n ) = a i. (b) t c t M (a 1,..., a n ) = c M. 1. t F (t 1 (x 1,..., x n ),..., t m (x 1,..., x n )) F t i t M (a 1,..., a n ) = F M (t M 1 (a 1,..., a n ),..., t M m (a 1,..., a n )). Definition 34 M L- a 1,..., a n M ϕ = ϕ(x 1,..., x n ) L- M ϕ(a 1,..., a n ) M = ϕ(a 1,..., a n ) 1. ϕ t(x 1,..., x n ) = u(x 1,..., x n ), M = ϕ(a 1,..., a n ) t M (a 1,..., a n ) = u M (a 1,..., a n ). ϕ P (t 1 (x 1,..., x n ),..., t m (x 1,..., x n )) M = ϕ(a 1,..., a n ) (t M 1 (a 1,..., a n ),..., t M m (a 1,..., a n )) P M. 2. ϕ ϕ 1 (x 1,..., x n ) ϕ 2 (x 1,..., x n ) M = ϕ(a 1,..., a n ) M = ϕ 1 (a 1,..., a n ) M = ϕ 2 (a 1,..., a n ). ϕ ϕ 1 (x 1,..., x n ) ϕ 2 (x 1,..., x n ) M = ϕ(a 1,..., a n ) M = ϕ 1 (a 1,..., a n ) M = ϕ 2 (a 1,..., a n ). 14

ϕ ϕ 1 (x 1,..., x n ) ϕ 2 (x 1,..., x n ) M = ϕ(a 1,..., a n ) M = ϕ 1 (a 1,..., a n ) M = ϕ 2 (a 1,..., a n ). ϕ ψ(x 1,..., x n ) M = ϕ(a 1,..., a n ) M = ϕ(a 1,..., a n ). ϕ xψ(x, x 1,..., x n ) M = ϕ(a 1,..., a n ) b M M = ψ(b, a 1,..., a n ). ϕ xψ(x, x 1,..., x n ) M = ϕ(a 1,..., a n ) b M M = ψ(b, a 1,..., a n ). Example 35 1. M 2 (GL 2 (R)) 2 M M M { }- (M, M) = x y(x y y x) 2. M M (M, M) = x y(x y = y x) 3. L = { } R Q L- L- ϕ x y(x = y y) R = ϕ Q = ϕ Exercise 36 M L- M 1. c L P L M = P (c) M = P (c M ). c M P M 2. ϕ(x 1,..., x n ) L- t 1,..., t n L M = ϕ(t 1,..., t n ) M = ϕ(t M 1,..., t M n ). 15

Definition 37 M L- ϕ L- M = ϕ M ϕ T L- M ϕ T M = T M T Remark 38 M ϕ M ϕ ϕ ϕ ϕ ϕ 6 1. 2. x(ϕ ψ) (ϕ xψ) ϕ x xϕ(x,...) ϕ(t,...) t t ϕ 3. 4. ϕ ψ ϕ ψ (Modus Ponens) ϕ xψ (Generalization) Remark 39 1. ϕ ϕ ϕ Γ Γ ϕ Γ ϕ 16

2. xϕ ( x( ϕ)) Proposition 40 Γ c Γ ϕ 1 (c, x),..., ϕ n (c, x) Γ ϕ 1 (c, x),..., ϕ n (c, x) c z ϕ 1,..., ϕ n ϕ 1 (z, x),..., ϕ n (z, x) Γ ϕ(c) Γ ϕ(x) x Γ ϕ(c) 7 Definition 41 1. Γ L Γ Γ ψ ψ ψ ψ (( ψ) θ)) Γ L- θ 2. Γ consistent Γ Lemma 42 ϕ L- 1. Γ {ϕ} θ Γ ϕ θ 2. Γ {ϕ} Γ ϕ Proof 1. Γ {ϕ} θ n n = 1 θ θ Γ {ϕ} θ Γ ϕ θ Γ θ ϕ ϕ θ ϕ ϕ Γ n + 1 Modus Ponens ψ ψ θ θ Γ {ϕ} Γ ϕ ψ, Γ ϕ (ψ θ). (ϕ ψ) (ϕ (ϕ ψ)) Γ ϕ ψ Γ ϕ (ϕ ψ). 17

Γ (ϕ ψ) θ. Γ ϕ θ Generalization 2. Γ {ϕ} Γ {ϕ} ϕ Γ ϕ ϕ. (ϕ ϕ) ϕ Γ ϕ Theorem 43 Γ L Γ Γ 1. L 2. c i i N L L = L {c i : i N} 3. Γ L - L Γ 4. Γ L - Γ 5. Γ L - M 6. M = Γ 7. M L M M = Γ 8 43 L Γ L L C = {c i : i N} L = L C Remark 44 ϕ(x, ȳ) x, ȳ L ϕ(c i, ȳ) L 18

Claim A Γ L L ϕ(c 1,..., c n, ȳ) ϕ(x 1,..., x n, ȳ) L 40 c 1,..., c n z 1,..., z n L 8.1 Γ L x {ϕ i (x) : i N} ϕ i (x) C c 0,..., c i 1 L Γ n (n N) Γ n = Γ { x(ϕ i (x)) ϕ(c i ) : i < n}. Claim B Γ n n = 1 n Γ 1 = Γ { x(ϕ i (x)) ϕ i (c i )} 42 Γ [ x(ϕ 0 (x)) ϕ 0 (c 0 )] [ x(ϕ 0 (x)) ϕ 0 (c 0 )] x(ϕ 0 (x)) ϕ 0 (c 0 ) Γ x(ϕ 0 (x)) Γ ϕ(c 0 ) 40 c 0 Γ Γ x( ϕ 0 (x)). Γ x(ϕ 0 (x)) Γ (Claim B 19

Γ ω = n ω Γ n Γ ω L Γ ω L Γ Zorn Claim C ϕ L ϕ Γ ( ϕ) Γ Γ Γ Γ {ϕ}, Γ { ϕ} 42 Γ ϕ; Γ ( ϕ). Γ Claim C Remark 45 Γ L - ϕ Γ ϕ = ϕ Γ ϕ ϕ ψ Γ ψ Γ 8.2 M Γ L - M L T erm t u t = u Γ Claim A t 1, t 2, t 3 T erm t 1 t 2, t 2 t 3 (t 1 = t 2 ), (t 2 = t 3 ) Γ Γ (t 1 = t 2 t 2 = t 3 ) t 1 = t 3 Γ t 1 = t 3 Remark 45 t 1 t 3 Claim D 20

Remark 46 [t] C t T erm x(t = x) L x(t = x) t = c n Γ x(t = x) Γ t = c n Γ [t] = [c] M M M = T erm/ = {[t] : t T erm} [t] t L c L P L n F L n c M = [c], P M = {([t 1 ],..., [t n ]) (M ) n : P (t 1,..., t n ) Γ }, F M ([t 1 ],..., [t n ]) = [t] (F (t 1,..., t n ) = t) Γ. well-defined 8.3 M Γ Claim A L ϕ M = ϕ ϕ Γ. ϕ,,,,, n Case 0: n = 0 ϕ P (t 1,..., t n ) t = u P M M = P (t 1,..., t n ) ([t 1 ],..., [t n ]) P M P (t 1,..., t n ) Γ. t = u Case n+1: ϕ ϕ ϕ 1 ϕ 2 M = ϕ 1 ϕ 2 M = ϕ 1 M = ϕ 2 ϕ 1 Γ ϕ 2 Γ ϕ 1 ϕ 2 Γ Γ 21

,, ϕ xψ(x) M = xψ(x) xψ(x) Γ : xψ(x) / Γ Γ xψ(x) Γ x ψ(x) Γ ψ(x) x L Γ n {ϕ i (x)} i N ψ(x) n ϕ n (x) x ψ(x) ψ(c n ) Γ Γ ψ(c n ) Γ M = ψ(c n ) M = x ψ(x) M = xψ(x) : xψ(x) Γ Γ t T erm ψ(t) Γ M = ψ(t) ( t T erm) [t] M M = xψ(x) 8.4 M M M Γ L - L C (M, P M, F M, c M, c M 0, c M 1,...) Γ C L (M, P M, F M, c M ) L- M Γ Γ Γ L M Γ 9 22

Lemma 47 ϕ( x) L- 1. ϕ( x) L- M M = xϕ( x) 2. T ϕ T M M = xϕ( x) Proof M M M T ϕ( x) ψ 1,..., ψ m T ψ 1... ψ m ϕ( x) x(ψ 1... ψ m ϕ) L- M M T M = ψ 1... ψ m M = xϕ( x) Remark 48 Definition 49 Definition 50 T L- ϕ L- L- M M = T M = ϕ T = ϕ T = = ϕ Theorem 51 T = ϕ T ϕ. Proof ( ) ( ): T ϕ Γ = T { ϕ} ( 42) Γ M M = T M = ϕ T = ϕ Theorem 52 T L- 1. T 23

2. T T 0 Proof 1 2 2 1: 1 T T ψ ( ψ) T T 0 = {ψ 1,..., ψ m } T 0 T 0 2 Example 53 L = {0, 1, 2,..., +,, <} N L- N N M N L- T c T = T {c > 0, c > 1, c > 2, c > 3,...} T T 0 T 0 T 0 = {ϕ 1,..., ϕ m } {c > 0,..., c > n} ϕ i T N = ϕ 1... ϕ m c n + 1 N = c > 1... c > n T M M = T M N L- M c M N Definition 54 C L- C T L- L- M M C M = T. Example 55 L {e,, 1 } 1. L- G T 2. F T F ( ) M M = T T T = T {θ n : n = 1, 2,...} 24

θ n n T T G = T G T ( ) Remark 56 L L- Theorem 57 (Löwenheim-Skolem) 1. T 2. T κ M κ M = T Proof 1 2 κ {c i : i < κ} T T = T {c i c j : i < j < κ} T 0 = {ϕ 1,..., ϕ m } {c i1,..., c in } ϕ i T N = T d 1,..., d n N N c N i j = d j N N = T 0. T M T T M = T. c i M κ Remark 58 Upward Löwenheim-Skolem 10 - R r R c r 25

f : R n R F f X R m P X R L c R r r F f R f P R X X T = {ϕ : R = ϕ, ϕ L- } R T c T = T {c 0} { c < c r : r R, r > 0} c 0 T Claim A T T 0 T 0 = {ϕ 1,..., ϕ m } {c 0} { c < r 1,..., c < r n } r i d = min{r 1,..., r n }/2 c d R T 0 Claim T R T T R L- R R R Lemma 59 R R R R Proof σ : R R R σ(r) = c r m F f L R = F f (r 1,..., r m ) = s R = F f (c r1,..., c rm ) = c s F f (c r1,..., c rm ) = c s T R = F f (c r1,..., c rm ) = c s R R = F f (c R r1,..., c R rm ) = c s R = F f (σ(r 1 ),..., σ(c rm )) = σ(s). σ R R R R R F R f f F f f X R m R P X X a R r R, r > 0 a c c R 0 2c R, 3c R,... R R 0 R 26

Remark 60 N N R = x y N(y < x < y + 1) R = x y N (y < x < y + 1) d = 1/c d R = n < d < n + 1 n N n N N Definition 61 a, b R a b a b Proposition 62 a R f : R R 1. f a 2. ε f (a + ε) f (a) Proof 1 2: f a n 0 R = x( x a < δ n f(x) f(a) < 1/n) δ n > 0 R R = x( x a < δ n f (x) f (a) < 1/n). x a + ε R = (a + ε) a < δ n f (a + ε) f (a) < 1/n. (a + ε) a < δ n R = f (a + ε) f (a) < 1/n n f (a + ε) f (a) 2 1: f a 1 ɛ > 0 g : N R R = x N [ g(x) a < 1/x f(g(x)) f(a) > ɛ ] R R = x N [ g (x) a < 1/x f (g (x)) f (a) > ɛ ] 27

x b N N R = g (b) a < 1/b f (g (b)) f (a) > ɛ g (b) a < 1/b < r ( r R, r > 0) g (b) a f (g (b)) f (a) 2 Proposition 63 f : R R 1. f 2. a, b R a b f (a) f (b). Proof 1 2: 1 n N {0} δ n R + R = x, y( x y < δ n f(x) f(y) < 1/n). R R = x, y( x y < δ n f (x) f (y) < 1/n). a, b R a b R = a b < δ n f (a) f (b) < 1/n n R = f (a) f (b) < 1/n n = 1, 2,.. f (a) f (b) 2 1: 1 ɛ > 0 g : N R, h : N R R = x N[ g(x) h(x) < 1/x f(g(x)) f(h(x)) > ɛ] R = x N [ g (x) h (x) < 1/x f (g (x)) f (h (x)) > ɛ]. k N N x R = g (k) h (k) < 1/k f (g (k)) f (h (k)) > ɛ. 1/k < 1/n (n = 1, 2,...) a = g (k), b = h (k) a b, f (a) f (b) 28

Exercise 64 1. a R R = a < n n N a b b R 2. f : [a, b] R f 29