D IEEJ Transactions on Industry Applications Vol.137 No.11 pp DOI: /ieejias Circuit Analysis and Characterization of Contactles

Similar documents
EV Fig.. Contactless power transfer system. (a) Single-sided winding transformer. Fig. 2. Detailed equivalent circuit. x 0, x, x 2 r 0 r, r 2 C P R L

. Fig. AC bus k k V I S Fig. 4. Fig. 3. The position of two lines The equivalent circuit model of line impedance Z(k) = V I S () Fig f [Hz], c[m

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Kat

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

パナソニック技報

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

チョークコイル・リアクタ

EV 1) 2) 3) Implementation and Experimental Validation of Control System for Ground Facilities and Electric Vehicles in Dynamic Wireless Power Transfe

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

原稿.indd

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Extended Summary pp Design and Implementation of Study Support System for Electric Circuit Using Virtual Oscilloscope Masashi Ohchi Member (Sa

28 Horizontal angle correction using straight line detection in an equirectangular image

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

kiyo5_1-masuzawa.indd

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

知能と情報, Vol.30, No.5, pp

SICE東北支部研究集会資料(2012年)

技術研究報告第26号

D IEEJ Transactions on Industry Applications Vol.133 No.3 pp DOI: /ieejias DC-DC Principle of Surge Voltage of a Rectifier in I

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

main.dvi

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,,,, E-ma

日本感性工学会論文誌

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

<95DB8C9288E397C389C88A E696E6462>

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

0801391,繊維学会ファイバ12月号/報文-01-西川

Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

音響部品アクセサリ本文(AC06)PDF (Page 16)

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

1

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

JFE(和文)No.4-12_下版Gのコピー

4.1 % 7.5 %

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

01 23A1-W-0012.indd

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

JIS Z803: (substitution method) 3 LCR LCR GPIB

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

F9222L_Datasheet.pdf

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L


A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

鉄鋼協会プレゼン

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

GPGPU

16_.....E...._.I.v2006

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

0801297,繊維学会ファイバ11月号/報文-01-青山

013858,繊維学会誌ファイバー1月/報文-02-古金谷

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

特-3.indd

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

untitled

X線分析の進歩36 別刷

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

dsample.dvi


Table 1 Utilization of Data for River Water Table 2 Utilization of Data for Groundwater Quality Analysis5,6,9,10,13,14) Quality Analysis5-13) Fig. 1 G

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

04長谷川英伸_様.indd

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

2-1. HEV EV EV EV EV EV 8 1 HEV HEV 196

) BPA ECN EPICLON N-600 Fig.2 Fig Fig.4 DCPD EPICLON HP-7200 ECN Fig.5 DCPD ECN DCPD 6-28) Table 1 BPA Fig.4 Chemical str

7,, i

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

P2P P2P peer peer P2P peer P2P peer P2P i

teionkogaku43_527

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

Transcription:

D IEEJ Transactions on Industry Applications Vol.37 No. pp.85 86 DOI: 0.54/ieejias.37.85 Circuit Analysis and Characterization of Contactless Power Transfer System with Variable Impedance Jun Yamada, Student Member, Kazuma Tsuda, Student Member, Ryota Kobayashi, Non-member, Yasuyoshi Kaneko,Member 06 0 07 6 9 A contactless power transfer system using a repeater coil Repeater Coil topology has been proposed as a method of suppressing overcurrent without power control during misalignment or no-load. By installing a repeater coil between the primary and secondary coils, it is possible to increase the input impedance in the case of misalignment of the secondary coil or no-load condition. In addition, another a contactless power transfer system using primary parallel and secondary series resonance capacitors PS Capacitor topology has been proposed. In the PS Capacitor topology, the input impedance can be increased during misalignment of the secondary coil or no-load condition similar to the Repeater Coil topology. In this paper, we evaluated the characteristics of both these topologies. First, we conducted a circuit analysis of the Repeater Coil topology and proposed a design method. In addition, we theoretically clarified the characteristic difference of the two topologies and experimentally evaluated the characteristics. PS Keywords: dynamic contactless power transfer, electric vehicle, repeater coil, PS capacitor topology, efficiency, filter. PHV EV PHV EV 3 EV 4 5 338-8570 55 Saitama University 55, Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan SS SP 6 7 Repeater Coil topology 8 Circular type 9 0 Solenoid c 07 The Institute of Electrical Engineers of Japan. 85

H 3 Polarized type 4 H PS 5 PS 3 4 7 3 6 H PS. PS SP Fig. V IN f 0 = 85 khz Fig.. c SP Capacitor topology Equivalent circuit. R L Fig. a C C r C Fig. b PS C C Fig. c SP C C 3. 3 Z IN Fig. a V IN = r + jω 0 L + I IN + jω 0 M r I r jω 0 C 0 = jω 0 M r I IN + r r + jω 0 L r + I r jω 0 C r Z IN 3 Z IN = V IN = r + jω 0 L + I IN jω 0 C ω 0 M r + 3 r r + jω 0 L r + / jω 0 C r 4 4 0 r r f 0 ω 0 M r Z IN C r = ω 0 L 4 r 3 V IN = jω 0 L + I IN + jω 0 M r I r + jω 0 M I jω 0 C 5 0 = jω 0 M r I IN + jω 0 L r + I r + jω 0 M r I jω 0 C r 6 0= jω 0 M I IN + jω 0 M r I r + jω 0 L + +R L I jω 0 C 7 r r r r f 0 ω 0 L ω 0 L r ω 0 L I IN I 46 8 I IN = M r M r I 8 86 IEEJ Trans. IA, Vol.37, No., 07

578 V IN I { V IN = M r jω 0 L + M r jω 0 L + + jω 0 M M } r R L M r jω 0 C M r jω 0 C M r 9 I = I D V D = R L I D 89 V IN = M { r Mr V D + jω 0 L + M r M r jω 0 C + M } r jω 0 L + jω 0 M I D M r jω 0 C 0 I IN = M r I D M r 0 34 3 4 b M r jω 0 L + + M r jω 0 L + jω 0 M =0 M r jω 0 C M r jω 0 C V IN V D I IN I D Z IN = = M r M r = k r k r L = b 3 k r L = M r = k r L = M r k r L b 4 kr L R L 5 L k nm n m L /L 34 L r 5 k r Z IN V IN I IN 3 3 6 R L ID η = r IIN + r rir + r I + R 6 LID 78 I r I 7 { I r = M ω } 0L /ω 0 C R L + j I M r ω 0 M r ω 0 M r { M = ω } 0L /ω 0 C R L + I M r ω 0 M r ω 0 M r 7 I 87 I = I D 6 η = { Mr M r + r r M r ω } 0L /ω 0 C R L + M r ω 0 M r ω 0 M r + r + R L R L 8 8 C C 7 9 η 0 C = η = ω 0 L M = r M ω M 0 L r R L k r k k r 9 0 Mr RL r + r r + r + R L M r ωm r R Lmax η max r Mr R L max = ω 0 M r + r r r M r r r η max = + r r ω 0 M r r r r Mr M r + r r r k Q i = ω 0 L/r i =,, r 8 34 R L max = k r r Q k Q r k r + k Q r r Q r 3 Q η max = 4 + k Q r k r k r Q r + k Q r r Q r Q 3 4 49 C 9 C = ω 0 L M = r M ω M 0 L r k r k k r 5 4. PS Fig. b V IN = r + jω 0 C + jω 0 L I + jω 0 MI 6 87 IEEJ Trans. IA, Vol.37, No., 07

V IN = I C 7 jω 0 C I = I IN + I C 8 0= jω 0 MI + r + jω 0 L + jω 0 C +R L I 9 r r f 0 ω 0 L ω 0 L 6 PS 30 3 33 k C = ω 0 L, C = ω 0 L k 30 L V IN = L V D M = = b PS 3 k L I IN = M L = k = 3 I D L L b PS Z IN = L R k L 33 L 33 b PS 33 k Z IN V IN 6 8 M = 0 34 Z IN = r + jω 0 L / jω 0 C r + jω 0 L + / jω 0 C 34 30 34 0 Z IN C = ω 0 L k, C = ω 0 L 39 V IN = M L = k = b SP 40 V D L L I IN = L I D M = L = 4 k L b SP Z IN = k L R L 4 L 404 PS b SP k Q i 8 9 4344 R L max = r Q k η max = + kq Q + k Q 43 44 Q + k Q 6. PS PS 6 3 4 C Z IN R Lmax η max Table 5 SP Table M R L max = ω 0 M + r 35 L r η max = 36 + r M + r ω 0 M L 3536 k Q i 8 3738 R L max = kr Q k + Q 37 Q η max = + k kq + Q 38 Q r Table. C, I/O characteristics, Z IN, R Lmax and emax. 5. SP SP Fig. c SP 39 6 40 4 88 IEEJ Trans. IA, Vol.37, No., 07

Table. Each Voltage and Current of transmitter. Q = Q r k r = PS Q r = Q k r = SP PS SP k Z IN PS k Z IN SP Z IN PS SP PS 6 Table I r 5 85 V r V r = jω 0 L r I r PS Q = Q r k r = V r V C I r I C PS I I IN I r V r I r V IN V IN V r I r PS I C V C I I IN Z IN I IN I IN I r PS I IN I C 45 I = I IN j V IN ω 0 L = IIN + VIN + I IN V IN sin θ ω 0 L ω 0 L = IIN + I C + I IN V IN sin θ 45 ω 0 L V IN I IN 3 0 3 I 6 3 Table N V r I r N V r I r L M Table 46 V r = L r N M r N V IN = NV r, I r = jω 0 M r N V IN = N I r 46 L r I r PS L I C 3 7. 7 PS Fig. 60 mm Table 3 H Fig. c 4T 4T 8T R L Table 3 SP SP PS 7 PS Fig. 3 89 IEEJ Trans. IA, Vol.37, No., 07

a Bird s-eye view b Secondary c Primary Repeater Coil topology d Primary PS Capacitor topology Fig.. Bird s-eye view and Transformer dimensions. Table 3. Transformer Parameters. Fig. 3. Input impedance. 0 7 3 Fig. 4 f 0 = 85 khz LC Table 4 R L 80 IEEJ Trans. IA, Vol.37, No., 07

Table 5. Experimental and Theoretical values at standard position. Fig. 4. Circuit structure. Table 4. LC Filter Parameters. Fig. 6. Input waveform at standard position. Table 6. Experimental values without nd coil. a Without winding partition Fig. 5. b With winding partition Divided winding circuit and Voltage vector figure. Fig. 7. Input waveform without nd coil. 7 4 7 V r 7 C r 4 Fig. 5 Fig. 5a Fig. 5b C r 0 V AB V r V r 8. Fig. PS 3.0 kw V IN 8 Table 5 Fig. 6 Table 5 Table 5 Fig. 6 PS I C 66.3 A I r 9.9 A /7 8 IEEJ Trans. IA, Vol.37, No., 07

a P L b Z IN c Efficiency Fig. 8. P L,Z IN and Efficiency at misalignment. Fig. 9. Each Voltage and Current by misalignment. PS 7 V r V IN 7,400 V 4 7/4 360 V 8 Table 6 Fig. 7 Table 6 I IN P IN 00 W I r PS I C Table PS I 0.3 A 8 3 x x = 50 mm 50 mm SP V IN I IN Fig. 8 P L Z IN η Fig. 8a Fig. 8b 50 mm 3. Ω 39.5 Ω PS 5.7 Ω 44.6 Ω 3 00 mm 90% % PS 70 A PS SP P L PS 50 mm 8.8 Ω 3. Ω /3 PS Fig. 9 Fig. 9 V IN I IN V D I D V IN V r I r I IN PS I Table b I IN V IN I IN 8 IEEJ Trans. IA, Vol.37, No., 07

9. Table 3 334 3.4 Ω PS 345.4 Ω Table 6.9 Ω.3 Ω Table 7 Fig. 3 Fig. 0 I IN I IN 9 47 48 V INV 47 v INV t = 4V INV e jω0t + 3 e j3ω0t + 5 e j5ω0t +... 47 v IN, t = 4V INV e jω 0t 48 4748 v INV t v IN, t 3 49 ω 0 M r Z IN, r r + jω 0 L r + / jω 0 C r 49 4849 i IN, 50 i IN, t = v IN,t Z IN, = 4V INV { r r ω 0 M r e jω 0t } + ω 0L r /ω 0 C r ω 0 M r e jω 0t+/ 50 L r M r 4 C r 50 5 ΔL r L r i IN, t = 4V INV r r e jω0t + ΔL r e jω 0t+/ ω0 M r ω 0 M r 5 ΔL r = L r L r 5 9 PS PS 34 r ω 0 L r 53 Table 7. nd coil. Comparison of parameters with and without L /C Z IN, 53 r + jω 0 L + / jω 0 C 4853 i IN, 54 i IN, t= v IN,t Z IN, = 4V INV e jω0t + ω } 0L /ω 0 C e jω 0t+/ L /C L /C 54 { r L 30 C 54 55 ΔL L i IN, t = 4V INV r ω 0 L e jω0t + ΔL L ω 0 L L e jω 0t+/ 55 ΔL = L L 56 Fig. 0. Input impedance without nd coil. 9 3 V IN LC I IN 83 IEEJ Trans. IA, Vol.37, No., 07

Fig.. Input impedance without nd coil with LC filter. I IN 57 v IN,n t = 4V INV n e jn ω 0t 57 n =, 3, 4,... v IN,n n LC Fig. Fig. 0 Fig. 3 Fig. LC L f L f 58 Z IN,n = jn ω 0 L f 58 n =, 3, 4,... Z IN,n n 5758 i IN,n 59 i IN,n t = v IN,n t Z IN,n = 4V INV ω 0 L f n e j{n ω 0t+/} 59 9 4 V INV I IN 559 PS 5559 6066 i IN t = i IN, t + i IN,n t n= = 4V INV Ae jω0t + Be jω 0t+/ +C n e j{n ω 0t+/} 60 n= A = PS r r ω 0 M r, B = ΔL r, C = 6 ω 0 M ω r 0 L f r A = ω 0 L, B = ΔL L ω 0 L L, C = 6 ω 0 L f 60 A B C 6 PS 6 V INV 60 V IN Fig. 6 Fig. 7 V IN V INV 48 63 63 V IN 64 65 4V INV = V IN 63 i IN t = V IN A sin ω 0t + B cos ω 0 t +C n= n cos n ω 0t 64 I IN = V IN A + B 4 + 96 C 65 6465 A B L C + L ΔL = 0 ΔL 0 cos ΔL 65 I IN L 84 IEEJ Trans. IA, Vol.37, No., 07

Exp c PS Capacitor topology Exp b Repeater Coil topology Theory d PS Capacitor topology Theory Fig.. Input waveform without nd coil by experiment and theory. Table 8. V INV, V IN, I IN and Z IN without nd coil by experiment and theory. 9 5 Fig. Table 8 Table 8 Fig. 5 ΔL = 0 I IN 0.49 A PS 0.53 A ΔL I IN Table 7 L.6% I IN 3 ΔL 0. H PS PS PS PS JSPS JP6K0608 JSAE: The Handbook of Automotive Engineering No.0: Design EV Hybrid Vehicles, JSAE, pp.3 336 0 in Japanese 0 EV,, pp.3 336 0 IEEJ: Battery System Technology, Ohmsha, Ltd., pp.36 64 0,, pp.36 64 0 3 S. Abe: Technology Trends of Contactless Power Transfer Systems for Electric Vehicle and Plug-in Hybrid Electric Vehicle, IEEJ Journal, Vol33, No., pp.5 7 03 in Japanese EV PHEV,, Vol.33, No. pp.5 7 03 4 Y. Kaneko, S. Matsushita, Y. oikawa, and S. Abe: Moving Pick-Up Type Contactless Power Transfer Systems and their Efficiency Using Series and ParallelResonantCapacitors, IEEJ IA, Vol.8, No.7, pp.99 95 008.7 in Japanese 85 IEEJ Trans. IA, Vol.37, No., 07

, D, Vol.8, No.7, pp.99 95 008.7 5 N. Oba, T. Yasuda, and M. Sato: Proposed Dynamic Contactless Transfer System, JSAE Annual Congress Autumn, 97-04587 04.0 in Japanese,, 97-04587 04.0 6 J. Konno, K. Tsuda, Y. Kaneko, H. Kishi, and T. Yasuda: Study about Resonant Capacitor Method and Power control of Wireless Power Transfer System by Series Connected Coils, National Convention Record, IEE Japan, 4-0, pp.353 354 05 in Japanese,, 4-0, pp.353 354 05 7 Y. Kanno, Y. Mita, Y. Kaneko, S. Abe, T. Yasuda, and A. Suzuki: Parking Misalignment Judgment using Search-coil for Contactless Power Transfer System of Electric Vehicle, The Papers of Technical Meeting on Semiconductor Power Converter SPC, SPC--007 0 in Japanese,, SPC--007 0..7 8 K.K. Ean, T. Imura, and Y. Hori: New Wireless Power Transfer via Magnetic Resonant Coupling for Charging Moving Electric Vehicle, EVTeC and APE Japan May, 04 9 C.-S. Wang, O.H. Stielau, and G.A. Covic: Design Consideration for a Contactless Electric Vehicle Battery Charger, IEEE Trans. Ind. Electronics, Vol.5, No.5, pp.308 34 005 0 R. Kluth and J. Ziegner: Inductive charging simplifying the charge to enable mass adoption, EVS6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Los Angeles 0 Y. Kamiya, Y. Daisho, and H. Matsuki: Inductive Power Supply System for Electric-drivenVehicles,IEEJ Journal, Vol.8, No., pp.804 807 008 in Japanese,, Vol.8, No., pp.804 807 008 T. Iwata, N. Ehara, Y. Kaneko, S. Abe, T. Yasuda, and K. Ida: Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle, The Paper of Technical Meeting on Semiconductor Power Converter SPC, IEEJ, SPC-09-39, pp.09 4 009 in Japanese,, SPC-09-39, pp.09 4 009 3 M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, and A. Suzuki: Small-size Light-weight Transformer with New Core Structure for Contactless Power Transfer System of Electric Vehicle, The Paper of Technical Meeting on Semiconductor Power Converter SPC, IEEJ, SPC--48, pp.39 44 0 in Japanese,, SPC--48, pp.39 44 0 4 M. Budhia, J.T. Boys, G.A. Covic, and C. Huang: Development of a Single- Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems, IEEE Trans. on Industrial Electronics, Vol.60, No., pp.38 38 03 5 C.-S. Wang, G.A. Covic, and O.H. Stielau: Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems, Industrial Electronics, IEEE Transactions, Vol.5, No., pp.48 57 Feb. 004 6 T. Fujita, Y. Kaneko, and S. Abe: Contactless Power Transfer Systems using Series and Parallel Resonant Capacitors, IEEJ Trans. IA, Vol.7, No., pp.74 80 007- in Japanese, D, Vol.7, No., pp.74 80 007-7 T. Imura and Y. Hori: Unified Theory of Electromagnetic Induction and Magnetic Resonant Coupling, IEEJ Trans. IA, Vol.35, No.6, pp.697 70 05 in Japanese, D, Vol.35, No.6, pp.697 70 05 8 T. Tohi, Y. Kaneko, and S. Abe: Maximum Efficiency of Contactless Power Transfer Systems using k and Q, IEEJ Trans. IA, Vol.3, No., pp.3 4 0 in Japanese k Q, D, Vol.3, No., pp.3 4 0 9 K. Tsuda, C. Kato, Y. Kaneko, T. Fujita, and T. Yasuda: Study about module coil for Dynamic Wireless Power Transfer, JLASC05, 4-, pp.iv3 IV8 05 in Japanese, JIASC05, 4-, pp.iv3 IV8 05 0 M. Jo, Y. Kaneko, and S. Abe: Methods for Reducing Leakage Electric Field of a Wireless Power Transfer System for Electric Vehicles, ECCE04, Pittsburgh, P76-769 04 T. Yamanaka, S. Noguchi, Y. Kaneko, S. Abe, T. Yasuda, and A. Suzuki: Contactless Power Transfer System for Electric Vehicle Rapid Charger, JLASC0, -, pp.ii407 II4 0 in Japanese, JIASC0, -, pp.ii407 II4 0 980 8 00 3 004 3 007 05 4 993 3 3 05 3 4 99 9 04 3 06 3 965 6 987 3 989 3 990 4 995 000 4 008 4 04 4 IEEE 86 IEEJ Trans. IA, Vol.37, No., 07