r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

Similar documents
#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

pdf



) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

70 : 20 : A B (20 ) (30 ) 50 1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

I 1

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

LLG-R8.Nisus.pdf

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

29

構造と連続体の力学基礎

chap1.dvi

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

量子力学 問題

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

85 4

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

プログラム

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

日本内科学会雑誌第98巻第4号

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

日本内科学会雑誌第97巻第7号

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

untitled

抄録/抄録1    (1)V

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0


研修コーナー

パーキンソン病治療ガイドライン2002

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


30 (11/04 )

( )

08-Note2-web

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

数学の基礎訓練I

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

c 2009 i

I ( ) 2019

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( ) ( )

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

v_-3_+2_1.eps

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

重力方向に基づくコントローラの向き決定方法

本文/目次(裏白)

i

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


sikepuri.dvi

Note.tex 2008/09/19( )

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

基礎数学I

高等学校学習指導要領

高等学校学習指導要領

all.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2000年度『数学展望 I』講義録

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Transcription:

1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0 C 0 G 1 0 x x V (x + x, t) I(x + x, t) 1 L 0 [H] [H/m] R 0 [Ω] [Ω/m] C 0 [F] [F/m] G 0 [S] [S/m] 1

R L C G x 4: x x x + x I(x, t) x x + x L R L 0 x R 0 x x + x V (x + x, t) L 0 x R 0 x I(x, t) V (x + x, t) = V (x, t) R 0 xi(x, t) L 0 x (1) x x x + x V (x, t) x x + x C C 0 x G G 0 x I(x + x, t) I(x + x, t) = I(x, t) (2) V (x + x, t) I(x + x, t) V (x, t) I(x, t) V (x, t)/ x I(x, t)/ x V (x + x, t) = V (x, t) + (3) I(x + x, t) = I(x, t) + I(x, t) x x (4) (1) (3) (2) (4) R 0 I(x, t) L 0 I(x, t) = (5) G 0 V (x, t) C 0 V (x, t) = (6) (5) x (6) t R 0 I(x, t) x G 0 V (x, t) L 0 2 I(x, t) x = 2 V (x, t) x 2 2 V (x, t) C 0 2 = 2 I(x, t) x x t (7) (8) 2 I(x, t) x = 2 I(x, t) x (9) (6) (8) (7) 2 V (x, t) V (x, t) 2 V (x, t) x 2 = R 0 G 0 V (x, t) + (L 0 G 0 + C 0 R 0 ) + L 0 C 0 2 (10) 2

I(x, t) 2 I(x, t) I(x, t) 2 I(x, t) x 2 = R 0 G 0 I(x, t) + (L 0 G 0 + C 0 R 0 ) + L 0 C 0 2 (11) [ 1] R 0 = 1 Ω/m G 0 = 1 S/m L 0 = 1 H/m C 0 = 1 F/m (10) V (x, t) V (x, t) = f(x)e jωt (12) f(x) x x = 0 f(x) = 1 x f(x) = 0 (12) (10) 2 f(x) x 2 e jωt = f(x)e jωt + 2jωf(x)e jωt ω 2 f(x)e jωt (13) f(x)e jωt 1 2 f(x) f(x) x 2 = 1 + 2jω ω 2 = (1 jω) 2 (14) x f(x) f(x) = Ae (1 jω)x + Be (1 jω)x (15) A B x f(x) = 0 B x = 0 f(x) = 1 A = 1 V (x, t) V (x, t) = e (1 jω)x e jωt = e x e jω(t+x) (16) 2 V in (t) 1 e jωt e jωt V (x, t) I(x, t) V (x, t) = V (x)e jωt I(x, t) = I(x)e jωt (17) (18) V (x) I(x) x t (17) (10) 2 V (x) x 2 = { }V (x) (19) V (x) V (x) (19) V (x) = V i e γx + V r e γx (20) 3

V i V r γ γ = (R 0 + jωl 0 )(G 0 + jωc 0 ) (21) V (x, t) (17) (20) V (x, t) = V i e γx+jωt + V r e γx+jωt (22) (18) (5) (R 0 + jωl 0 )I(x)e jωt = γv i e γx+jωt + γv r e γx+jωt (23) I(x) I(x) = I i e γx I r e γx (24) I i I r I i = V i I r = V r (25) (26) = (27) (18) (24) I(x, t) I(x, t) = I i e γx+jωt I r e γx+jωt (28) (22) (28) V r I r V (x, t) I(x, t) V r I r V r = 0 (22) (28) V (x, t) = V i e γx+jωt I(x, t) = I i e γx+jωt (29) (30) γ γ = α + jβ (31) α β (29) (30) V (x, t) = V i e αx e j(ωt βx) I(x, t) = I i e αx e j(ωt βx) (32) (33) 4

(32) (33) α β jω V i e αx e j(βx ωt) L 0 R 0 C 0 G 0 R 0 L 0 = G 0 C 0 (34) α β α = (35) β = ω (36) α β ω (34) V i e αx e j(βx ωt) Re[V i e αx e j(ωt βx) ] = V i e αx cos(ωt βx) = V i e αx cos{ω(t L 0 C 0 x)} (37) t = 0 t = t 5 V(x,t) 0 x x t=0 t= t 5: α e αx x α βx β cos{ω(t L 0 C 0 x)} (37) (34) 2 (34) (34) R 0 G 0 α = 0 R 0 = 0 G 0 = 0 5 V i e αx cos(βx ωt) t x x V i e γx+jωt x (22) 1 t x v p = x t (38) x v p 5 x t β x ω t = 0 (39) 2 f 1(t) f 2(t) t f 2(t) = Kf 1(t τ) K τ ω (34) K τ K = e R 0 G 0 τ = L 0C 0 5

v p v p = ω β = 1 L0 C 0 (40) (22) 2 x (22) 2 (28) 1 2 V(x,t 0 ) t=t 0 0 x 6: t = t 0 (37) V (x, t 0 ) V (x, t 0 ) = V i cos{ω(t 0 βx)} (41) 6 β = L 0 C 0 2π 1 λ λ = 2π β (42) λ [ 2] 1(a) r d L 0 = µ 0 2π ln d 2r C 0 = 2πϵ 0 (43) (44) ln d 2r 1(b) r d L 0 = µ 0 π cosh d 2r (45) C 0 = πϵ 0 cosh d 2r (46) µ 0 µ 0 = (1/36π) 10 9 H/m ϵ 0 ϵ 0 = 10 7 /(4πc 2 0 ) F/m c 0 (3.0 10 8 m/s) 6

R 0 G 0 L 0 C 0 L 0 C 0 = µ 0 ϵ 0 (47) v p 1/L 0 C 0 v p = 1 µ 0 ϵ 0 = c 0 (48) [ 1] 1 GHz λ 3 1 I(l) 2 V(0) V(l) 1 2 l 7: F 3.1 F 7 l F x (20) (24) γ jβ 7 V (0) (20) (24) V (0) = V i + V r = V i V r V (l) I(l) (20) (24) x = l V (l) = V i e jβl + V r e jβl I(l) = V i e jβl V r e jβl (51) (52) (49) (50) (51) (52) 7

e x e x cosh x sinh x e x = cosh x e x = cosh x sinh x sinh x (53) (54) (51) (52) V (l) = (V i + V r ) cosh(jβl) (V i V r ) sinh(jβl) (55) I(l) = V i + V r sinh(jβl) + V i V r cosh(jβl) (56) (49) (50) V (l) I(l) = V (0) cosh(jβl) Z 0 sinh(jβl) cosh(jβl) V (0) = sinh(jβl) + cosh(jβl) 1 sinh(jβl) sinh(jβl) cosh(jβl) V (0) (57) cosh 2 x sinh 2 x = 1 V (0) V (0) = cosh(jβl) sinh(jβl) 1 V (l) (58) sinh(jβl) cosh(jβl) I(l) F β = ω L 0 C 0 F A D jω B C jω AD BC = 1 F [ 2] F AD BC = 1 I(l) V(0) V(l) R l 8: 3.2 8 l 8 Z in = V (0)/ (58) Z in = V (0) = Z cosh(jβl)v (0) + sinh(jβl) 0 sinh(jβl)v (0) + cosh(jβl) (59) 8 V (l) I(l) V (l) = I(l) (60) 8

(59) Z in Z in = R cosh(jβl) + sinh(jβl) R sinh(jβl) + cosh(jβl) (61) Z in R R R = Z in Z in R=Z0 = = R (62) R R = 0 R = Z in Z in R=0 = sinh(jβl) cosh(jβl) = tanh(jβl) = p (63) cosh(jβl) Z in R= = sinh(jβl) = tanh(jβl) = p p p = tanh(jβl) = j tan(βl) (65) L 0 C 0 (63) (64) p s (63) p (64) p (64) R 1 1 I(l) 2 V in V(0) V(l) R 2 1 l 2 9: [ 3] 8 R = 50 Ω = 100 Ω l = 3λ/4 Z in λ 3.3 9 1-1 2-2 (20) V i V r V i e jβl V r e jβl Γ S Γ L V i + V r = V (0) (66) 9

V i V r = (67) Γ S Γ S = V r V i = V (0) V (0) + = Z 11 Z 11 + (68) Z 11 Z 11 = V (0) (69) (61) R R 2 Z in (60) (60) V (l) = V i e jβl + V r e jβl (70) I(l) = 1 (V i e jβl V r e jβl ) (71) ( R 2 1)V i e jβl = R 2 + 1)V r e jβl (72) Γ L Γ L = V re jβl V i e jβl = R 2 R 2 + (73) Z 11 = Γ S = 0 Z 11 (61) R R 2 Z in R 2 = R 2 R 2 = Γ L V in R 2 Z 11 R 1 3.4 9 V (x, t) (22) V (x, t) = V i e jβx+jωt + V r e jβx+jωt (74) γ = jβ (73) V r e jβl V r e jβl = Γ L V i e jβl (75) (74) V (x, t) = V i e jβx+jωt + Γ L V i e jβx+jωt = V i e jβl e jβ(x l)+jωt + Γ L V i e jβl e jβ(x l)+jωt (76) 1 2 1 V i e jβl e jβ(x l)+jωt = (1 Γ L )V i e jβl e jβ(x l)+jωt + Γ L V i e jβl e jβ(x l)+jωt (77) 10

1 x = l R 2 2 (76) 2 β = ω L 0 C 0 V stand = Re[Γ L V i e jβl e jβ(x l)+jωt +Γ L V i e jβl e jβ(x l)+jωt ] = 2Γ L V i cos{ω L 0 C 0 (x l)} cos{ω(t L 0 C 0 l)} (78) 2 Γ L V i cos{ω L 0 C 0 (x l)} x 3 x V real (x, t) R 2 V real (x, t) = (1 Γ L )V i cos ω(t L 0 C 0 x) + 2Γ L V i cos{ω L 0 C 0 (x l)} cos{ω(t L 0 C 0 l)} (79) x = 0 x = l V real (x, t) V max V min V max V min (76) x (76) Re[V i e jβx+jωt + Γ L V i e jβx+jωt ] = V i cos(ωt βx) + Γ L V i cos(ωt + βx) (80) cos(x 1 + x 2 ) = cos x 1 cos x 2 sin x 1 sin x 2 sin(x 1 + x 2 ) = sin x 1 cos x 2 + cos x 1 sin x 2 V i cos(ωt βx) + Γ L V i cos(ωt + βx) = V i (cos ωt cos βx + sin ωt sin βx) + Γ L V i (cos ωt cos βx sin ωt sin βx) = V i (1 + Γ L ) cos βx cos ωt + V i (1 Γ L ) sin βx sin ωt = V i (1 + Γ L ) 2 cos 2 βx + (1 Γ L ) 2 sin 2 βx sin(ωt + θ) = V i 1 + 2 cos 2βx + Γ 2 L sin(ωt + θ) (81) θ θ = tan 1 (1 + Γ L) cos βx (1 Γ L ) sin βx (82) (81) cos 2βx x 1 1 V max = V i ( ) (83) V min = V i ( ) (84) ρ ρ = V max = 1 + Γ L V min 1 Γ L (85) 3 = L 0/C 0 Γ L 11