KENZOU Karman) x

Similar documents
Untitled

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

: , 2.0, 3.0, 2.0, (%) ( 2.

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

QMI13a.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

201711grade1ouyou.pdf

TOP URL 1

KENZOU

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

DVIOUT

TOP URL 1

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

( ) ( )

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

i 18 2H 2 + O 2 2H 2 + ( ) 3K

all.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Note.tex 2008/09/19( )

2000年度『数学展望 I』講義録

2011de.dvi

I


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

meiji_resume_1.PDF

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

構造と連続体の力学基礎

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

数学の基礎訓練I

b3e2003.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

K E N Z OU

70の法則

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

TOP URL 1


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

untitled

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

ohpr.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

陦ィ邏・2

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

untitled

総研大恒星進化概要.dvi


/02/18

Microsoft Word - 11問題表紙(選択).docx

Contents 1 Jeans (

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

gr09.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

平成12年度

ユニセフ表紙_CS6_三.indd

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


sec13.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

v er.1/ c /(21)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Transcription:

KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /......................... 6 13 7 13.1.................................................. 7 13........................................... 8 13..1 x........................... 9 13............................................. 1 13..3 ( ).............................. 1 13.3.......................................... 14 ============================ 1

1 7 11.3.3 R e 3 R e x y u v ū, v u v 1 u = ū + u, v = v + v x u y v v u = ū + u, v = v (1.1) F ig.56 u ū y v = v ū ū u O t O x τ r τ l τ t τ r = τ l + τ t τ l Fig.56 x ρv u x ρv (ū + u ) 1 t t ū u v t ρv (ū + u )dt = ρū t = ρ t t t v dt + ρ t t u v dt u v dt ρ u v (1.) ū = 1 t t udt =, 1 t t u dt =, 1 t t v dt = (1.3) 1.τ r τ r = ρ u v (1.4) Reynolds stress u v τ τ = τ + τ r = µ dū dt ρ u v = ρν dū dt ρ u v (1.5) 1 7 N-S Q Q Fig.57 τ r

ρν(dū/dt) ρ u v τ F ig.57 H-P H-P u u max ū Boussinesq τ = ρ u v = ρɛ dū (1.6) 3 τ τ = ρν dū dt ρ u v = ρ(ν + ɛ) dū (1.7) ɛ ν 1.1 u v Prandtl 4 5 mixing length ρu v ( ) dū τ r = ρ u v = ρ l (1.8) l mixing length l u v = l dū (1.9) 6 3 1.6 Boussinesq 4 Ludwig Prandtl 1875-1953) 5 η η = (1/3)mρv l l 6 195 3

F ig.58 y l m(dū/) l ū(y + l m) ū(y) ū(y l m) l m(dū/) ū(y + l m). = ū(y) = ū(y l m). = x u(y) u(y) dū + l m u(y) dū l m τ r τ r x x y ū u(y) l m l m ū(y + l m ) =. u(y) dū + l m ū(y) = u(y) ū(y l m ) =. u(y) dū l m (1.1) y y + l m y y l m y dū ū(y + l m ) ū(y) = l m ū(y l m ) u(y) dū = l m (1.11) y ū(y) u ū ū = 1 { l m dū } + dū l m = l m dū (1.1) y y v ū v = ( ) u dū = ( ) l m (1.13) u v y u v y u v c u v = u v (1.14) u v = c ū v (1.15) 1.8 τ r 1.1 1.15 τ r = ρ u v = ρc ū v ρc lm dū ( ) dū = ρ l (1.16) 1.8l c l m l 7 1.6 τ = ρɛ(dū/) ɛ ɛ = l dū/ ɛ 7 l m Prandtl l 4

1. (P89) l.4 l =.4y l y l = κy (1.17) κ κ =.4 1.8 dū = 1 τr κy ρ (1.18) 1.3 τ r R e < 5 viscous sublayer 8 δ 7 τ w τ w = µ du = µu y (y δ ) (1.19) ρ τ w ρ = ν u y (1.) τ w /ρ [ML T L 3 /M 1 L 3 ] 1/ = [LT 1 ] τ w /ρ = u u y = δ u = u δ R δ u δ = u δ = R δ (1.1) u ν F ig.59 y δ u u δ x 8 5

τ r = τ w 9 τ r ( ) dū τ r = κ ρy dū = 1 τr κy ρ (1.) τ r u 1. dū = u 1 κ y ū = 1 u κ ln y + const 1 ū ln y + const =.33 κ u κ log 1 y + const (1.3) ū u y = 5.75 log u 1 + 5.5 (1.4) ν 1 log law 7 τ τ = µ dū = τ w = const τ w dū = τ w µ = ( ) τw 1 ρ ν = u ν u ū = u ν y + const y = ū = const = ū = u ν y ū = u y u ν wall cordinate y + = yu /ν [L T 1 /L T 1 ] u + = ū u = u y ν = y+ 1.4 / ū/u max u ( y ) 1/n ( = = 1 r 1/n (1.5) u max a a) 9 1 h u/u = 8.48 + 5.75 log 1 y/h by Nikuradse) 6

a y (r n R e = 3 1 3 1 5 n = 7 u = u max (y/a) 1/7 (1.6) 1/7 11 R e = 1 5 τ w ū/u max =.8.8 (1.7) ( ) 1/4 τ w =.ρu ν max (1.8) u max a 8 cm 6cm/sec 1 1 ν =.13cm /sec R e = ūd/ν6 /.13 = 938 3 1 3 < R e < 1 5 1/7 ( ) 1/4 u max = ū/.8 = 6/.8 = 75.cm/sec, τ w =.5ρu ν max =.83kg/m (1.9) u max a 13 13.1 Re = L/ν = / 1 du/ du/ = free stream main stream 1 Boundary layer 1 F ig.6 y x.99 δ(x 1) x 1 x 99% y δ 11 R e 1 7 n = 1/8, 1/9 1 194 7

laminar boundary layerturbulent boundary layer transition region R c = 5 1 5 13 13. t + u x + v y = 1 ( p ) ρ x + ν u x + u y v t + u v x + v v y = 1 ( p ) ρ y + ν v x + v y x + v y = (13.1) x y δ L x u, x L, v y x L v L δ, v x L δ, y δ, u x L, v y Lδ = L L δ u y δ (13.) (1) u () v (3) u (4) v [ ] [ u ν x + u y ν L + L ] L δ [ ] [ v ν x + v δ y ν L L + ] L L δ u x + v y ( L + δ ) L δ = L + L u v x + v v y δ ( L + δ ) L L = δ L L + δ L L (13.3) (13.4) (13.5) (13.6) δ L ( δ L 1) (a) (b) (a) (b), (c) (d) (c) (d) 13.1 t + u x + v y = 1 p ρ x + ν u y p y = x + v y = (13.7) 13 8

14 13.7 ( ρ ū ū ) ū + v = ρ p x y x + τ y τ = µ ū y ρu v p y = ū x + v y = (13.8) 9 L b ρ µ δ δ 13. u x L, ν u y ν δ (13.9) δ L ν δ δ νl (13.1) 15 3 / y y= k y = u = v = u x + v y = 1 ρ p x + ν u x = 1 p ρ x + ν u x u y = 1 p ρν x = 1 p µ x y / y = (1/µ)( p/ x)y + const const = k (... y = / y = k) y = u = u = 1 p µ x y + ky (13.11) 13..1 x y x δ x t = 14 ) 15 13.3 13.4 δ = 5.r νl 9

y u(y) y = δ u y =, y=δ y = y=δ y x p x = p x y=δ u x = 1 p y=δ ρ x y=δ.. p. = ρu x x = ρ y=δ x (13.1) x x (d/dx = ) x dp/dx = 13.1 ( 1 x + p ) = p + 1 ρ ρ = const = p + 1 ρ (13.13) const 3 4. 13.. δ u 99% y δ =.99 δ.99 3 16 17 (1) δ displacement thickness δ F ig.61 y δ u x = δ u Fig.61 16 17 δ.99 31 1

Q δ = Q δ = 1 ( u) (13.14) y > δ u δ () θ momentum thickness θ θ = 1 u( u) (13.15) ρ ρ θ = uρ( u) ρ( u) Fig.61 u ρθ ρθ (3) θ energy thickness θ θ = 1 3 u( u ) (13.16) H shape factor δ θ H=.59 H=1.4 H = δ θ (13.17) adverse pressure gradient H θ H H H=3.5 H=.4 31 1/7 δ θ 1/7 1.6 δ = 1 θ = 1 u = (y/δ) 1/7 { ( y ) } 1/7 ( u) = 1 = δ δ 8 ( y ) { 1/7 ( y ) } 1/7 u( u) = 1 = 7 δ δ 7 δ 11

13..3 ( ) 18 u x + v y = 1 ρ 13.3 y = y = δ p x + ν u y (13.18) x + v y = (13.19) x = 13.18 y = y = δ { u x + v } { } 1 p = y ρ x + ν u y 13.34 1.19 v ( δ y = = 13.34 ) x y = x + { u x + v } = y 13.34 1 13.1 1.19 ν u y = 13.) 1 p ρ x = ν y δ v y = v y=δ (13.) u x u y { u x } x d dx δ + = ν y ν y=δ y = 1 y= ρ τ w u x (13.1) ( u x x d ) = 1 dx ρ τ w (13.) u x x d dx = x (u ) (u) ud x dx + d dx = d [u(u )] ( u) x dx 13.) d dx u( u) + d dx δ θ 13.3 d dx ( θ) + δ d dx = τ w ρ... 18 dθ d + θ dx dx + δ d dx = τ w ρ ( + δ θ dθ dx + ( u) = 1 ρ τ w (13.3) dθ dx + ) ( + δ θ d θ dx = τ w ρ ) θ d dx = τ w ρ (13.4) 1

x = const d/dx = 13.3 τ w = d dx ρu( u) (13.5) 3 (δ y)y u = δ (13.6) δ x dθ dx + ) ( + δ θ d θ dx = τ w ρ x θ θ = 1 (δ y)y = δ u( u) = 1 { 1 τ w ( ) τ w = µ = µ y y= y 13.37 dθ dx = τ w ρ 15 dθ dx = τ w ρ (13.7) (δ y)y δ { (δ y)y δ { } = 3 δ 8 15 δ = 15 δ } (δ y)y δ } (δ y)y δ = µ δ (δ y) y= = µ δ dδ dx = 1 ( ) µ ρ 1 dδ δ 15 dx =... δdδ = 15ν dx δ = 3 νx + const ν, ν = µ/ρ δ x = δ = const = x 3νx δ(x) δ(x) = 33 δ u = a + by + cy τ a =, b = /δ, c = /δ 13.5 τ = ρ d dx y = u = = a y = δ u = = a + bδ + cδ y = δ y = = b + cδ u = [(y/δ) (y/δ) ] u( u) = ρ d ( ) dx 15 δ = dδ ρ 15 dx ( ) du τ = µ = µ y= d [ { ( y ) ( y ) }] = µ δ δ y= δ 13

dδ ρ 15 dx = µ δ... δdδ = 15 ν dx δdδ = 15 ν x dx νx δ = 5.48 τ τ = µ δ =.73ρ ν x 13.3 34 1/7 τ ( 1/4 τ =.5ρ ν δ(x)) 31 13.4 { ) dθ τ = ( dx + + δ θ d θ dx = 7 { dδ 7 dx + 3.86 δ d dx } ρ = } ρ { 7 dδ 7 dx + ( + 7 ) 7 8 7 7 δ } d ρ dx τ ( ) 1/4 ν τ =.5ρ (13.8) δ(x) d/dx = 7 dδ 7 dx =.5ρ ( ) 1/4 ν 7 δ(x) 7 δ 1/4 dδ =.5 x ( ν ) 1/4.. ( ν ) 1/5. δ(x) =.371 x 1/5 (13.9) x 4/5 x 13.3 p/ x = / t = u x + v y = ν u y, 9 δ νx δ x, y ξ, η 19 ξ = x, η = (y/) = y δ νx 19 η = y/δ y/ x + v y = (13.3) 14

ψ = νxf(η) (13.31) f(η) x, y ξ, η ϕ(ξ, η) ϕ(ξ, η) x ϕ(ξ, η) y = ϕ ξ ϕ(ξ, η) y = ξ x + ϕ η η x = ϕ ξ + η x ϕ νx η = ϕ ξ ξ y + ϕ η η y = 1 ( ) ( ) ϕ = 1 y y 4 νx u, v ϕ η x = ξ η x η y = 1 νx η ϕ y y = 1 4 νx η (13.3) u = ψ y = 1 ψ νx η = 1 f (13.33) v = ψ ( x = ξ η ) ψ = 1 ν x η x (f η f) ( x = ξ η x u y = 8νx f η ) f (η) = η 4x f, f y = 4 νx f (13.34) ff + f = (13.35) η y = u = v =, y = u = y = u =, v = η = f =, f = y = u = η = f = f(η) η f(η) = A + A 1 1! η + A! η + A 3 3! η3 (13.36)... f (η) = A 1 + A η + A 3! η + f() = A =, f () = A 1 = f(η) = A! η + A 3 3! η3 + A n n! ηn +, f (η) = A η + A 3! η + + A n f (η) = A + A 3 η + + 13.35 ( ) A A 3 + A 4 η + + A 5 η +! η (n 1)! ηn 1 + A n (n )! ηn +, f (η) = A 3 + A 4 η + A 5! η + + A n (n 3)! ηn 3 ( 4A A 3 + A 6 3! ) η 3 + = A 3 =, A 4 =, A + A 5 =, 4A A 3 + A 6 = ( A 6 = ), A 7 = 15

f(η) f(η) = A! η A = A 1/3 5! η5 + 11A3 8! { (A 1/3 η) 3! η 8 375A4 η 11 + 11! (A1/3 η) 5 5! + 11(A1/3 η) 8 8! [ = A 1/3 Y Y 5 + 11Y 8 ] 11 375Y +! 5! 8! 11! } 375(A1/3 η) 11 + 11! ( Y = A 1/3 η) = A 1/3 F (Y ) (13.37) A ( ) f lim f Y = lim = A /3 η lim Y Y η F (Y ) Y η = f = A /3 lim Y F (Y ) = A = lim Y F (Y ) 3/ 13.37 A = 1.384 (13.38) f (η) = f () = A = 1.384 τ w 13.34 τ w = µ ( ) = y y= 4 νx f () = 4 ( ν ) 1/ ρ νx f () 1.384 =.6641 x (13.39) δ xν δ(x) = 5. (13.4) xν xν δ (x) = 1.7, θ =.664 (13.41) ( ) 8 OK (!?) 9 16