1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

Similar documents
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

SO(2)

meiji_resume_1.PDF

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1

all.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

Gmech08.dvi

Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

all.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


I

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

7

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


b3e2003.dvi

Untitled

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Part () () Γ Part ,

量子力学 問題

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

,,..,. 1

chap10.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

29

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

液晶の物理1:連続体理論(弾性,粘性)


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

TOP URL 1

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

高等学校学習指導要領

高等学校学習指導要領

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

構造と連続体の力学基礎

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

untitled


Dynkin Serre Weyl

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

: , 2.0, 3.0, 2.0, (%) ( 2.


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

³ÎΨÏÀ

70 : 20 : A B (20 ) (30 ) 50 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


K E N Z OU

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

( ) ( )

Z: Q: R: C: sin 6 5 ζ a, b

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

II 2 II

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Note.tex 2008/09/19( )

第3章

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

/02/18

QMII_10.dvi

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

05Mar2001_tune.dvi


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

行列代数2010A

chap1.dvi

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

untitled


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Transcription:

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1 < v < 1 < η < U(A) U(A)U(B) = U(AB) U(A 1 ) = U 1 (A) U(1) = 1( ) G (n) SO(N) x i (i = 1 N) N L = N i=1 x2 i O(N) n(n 1) SO(N) 2 SU(N) Special Unitary Group u i (i = 1 N) N L = N i=1 u i 2 1 n(n 1) SU(N) N N N 2 1 θ i F i ( U = exp i N i=1 θ i F i ) TrF i = 0, F i, F j = i f i jk (A.2)

A 2 * 1) F i SU(N) f i jk SU(2) F i = τ i 2 SU(3) F i = λ i 2 A.2 x x r y = R i j y = Rr z r = x 2 + y 2 + z 2 z r 2 = r T r = r T R T Rr = r 2 = r T r (A.3) (A.4a) R T R = 1 (A.4b) R 3X3 V = (V x,v y,v z ) z θ cosθ sinθ 0 = sinθ cosθ 0 0 0 1 V x V y V z V x V y V z V = R z (θ)v (A.5) θ θ δθ R z (δθ) = 1 + is z δθ S z = 1 dr 0 i 0 z = i 0 0 (A.6) i dθ θ=0 0 0 0 R z (θ) = lim n δθ=θ/n (1 + ij z δθ) n = expis z θ (A.7) S z z (generator) x 0 0 0 0 0 i 0 i 0 S x = 0 0 i S y = 0 0 0 S z = i 0 0 0 i 0 i 0 0 0 0 0 * 1) expiλ n( θ 2 ) = expiq U = exp iq TrU = TrS 1 US S U η i detu = i η i = exp( i logη i ) = e Tr(logU) = e itrq TrQ = 0 detu = 1 (A.8)

A 3 +1 i jk 123 S i, S j = iε i jk S k ε i jk = 1 i jk 123 (A.9) ε i jk O(3) L = r p = i(x i j x j i ) x i = (x,y,z) (A.10) S = (S x,s y,s z ) S J = L + S (A.11) n θ ( ) R (A.4b) O(3) ( ) R(n,θ) = exp ij nθ (A.12) A.3 SU(2) U(2) 2 ( ) ψ = (A.13) 2 2 SU(2) (detu = 1) ψ ψ = Uψ ξ 1 ξ 2 = a c b d (A.14) U 1 = U detu = 1 (A.15) a U = b b, a 2 + b 2 = 1 (A.16) a

A 4 A.1 (A.16) ξ 2 0 1 ξ = 1 1 0 ψ = ξ 1 ξ 2 ******************************************: = iσ 2 ψ (A.17) N N 2 1 λ (λ i ; i = 1 N 2 1) θ n (n 2 = 1) U = exp iλ n ( θ2 ) (A.18) ******************************************: N = 2 λ i = σ i s i = σ i /2 SU(2) U = exp i σ 2 θ = cos θ 2 + sin θ 2 iσ n (A.19) s i, s j = iε i jk s k (A.20) SU(2) O(3) O(3) H i j = ξ i ξ j (i, j = 1 2) H i j 2 2 4 H = a1 + b σ = a1 + b z b x + ib y b x ib y = A + B (A.21) b z SU(2) H H = UHU = A + B = a 1 + b σ (A.22) A = a 1 = UAU = Ua1U = a1 a = a (A.23) a SU(2) a (A.21) ( ) 2a = TrH = ξ 1 + ξ 2 = 2 + 2 = ψ ψ SU(2) B (A.24) detb = detubu = detb b 2 x + b 2 y + b 2 z = b 2 x + b 2 y + b 2 z (A.25)

A 5 (A.21) b = (b x,b y,b z ) SU(2) O(3) b V (A.5) b x (A.21) σ x Trσ 2 x = 2, Trσ x = Trσ x σ y = Trσ x σ z = 0 b x = 1 2 Trσ xh = 1 2 (σ x,i j)ξ j ξ i = ξ i (σ x,i j)ξ j = ψ σ x ψ b y = ψ σ y ψ, b z = ψ σ z ψ (A.26) SU(2) z (A.19) n = (0,0,1) b x b x = ξ σ x ξ = ξ U σ x Uξ (A.27) = ξ (cos θ 2 sin θ ( 2 iσ z )σ x cos θ 2 + sin θ ) 2 iσ z ξ (A.28) σ z σ x σ z = σ x, σ z σ x = iσ y b x = cosθ b x + sinθ b y (A.29a) b y = sinθ b x + cosθ b y (A.29b) b z = b z (A.29c) b = ψ σψ O(3) A.2 ξ = ξ = η 1 η 2 1/2 v s = η 2 η x = η 2 2 η 1 1 v : v y = η 1 2i + η 2 2 v z = η 2 2 + η 1 (A.30) 0 1 x SU(2) y O(3) z U = e iσ θ/2 = cos θ 2 + sin θ 2 iσ n R = e ij θ (A.31) SU(2) 4π O(3) 2π 2π 4π U U O(3) SU(2) O(3) 1 : 2 O(3) SU(2) 1/2 1/2 4π SU(2) A.1

付録A 回転群 6 図 A.1: SU(2) トポロジーの図示 4π 回転後紐はステップ 3-8 を実行することによりほぐすことができ る 2π 回転ではほぐすことがでない C.W. Misner, K.S.Thorne and J.A Wheeler, Gravitation (W.H Freeman 1973)