untitled

Similar documents
untitled



x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Gmech08.dvi

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

. p.1/14

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

PowerPoint プレゼンテーション

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

notekiso1_09.dvi

i


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Gmech08.dvi

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Acrobat Distiller, Job 128

mugensho.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

DVIOUT

b3e2003.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II 2 II

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Part () () Γ Part ,

( ) ( )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

phs.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

i 18 2H 2 + O 2 2H 2 + ( ) 3K

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

°ÌÁê¿ô³ØII

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

pdf

II 2 ( )

Fubini

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

7-12.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4


v er.1/ c /(21)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

応力とひずみ.ppt

Gmech08.dvi

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y



I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2000年度『数学展望 I』講義録

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

KENZOU

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

Transcription:

20010916 22;1017;23;20020108;15;20;

1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3 2 u =(u 1,u 2,u 3 ), v =(v 1,v 2,v 3 ) u v =(u 2 v 3 u 3 v 2,u 3 v 1 u 1 v 3,u 1 v 2 u 2 v 1 ) R n u =(u 1,,u n ), v =(v 1,,v n ) u v = u 1 v 1 + +u n v n u = u u 1 R 2 2 R 3 P =(x, y) R 2 u : R 2 R 2 P u(p ) R 2 [a, b] R 2 ( ) R 2 [a, b] 1:1 1:1 d u (t) (0, 0), dt t [a, b], 1 n A (R R 2 ) 1 1.1 [1] u, v θ u v = u v cos θ

2 [2] (1) V(P )=(1, 0), P =(x, y) R 2. (2) V(P )=(x, y), P =(x, y) R 2. (3) V(P )=(y, x), P =(x, y) R 2. (4) V(P )=( y, x), P =(x, y) R 2. [3] (1) V(x, y) =(x, ( 0) ) x (2) V(x, y) = x 2 + y, y ( 2 x 2 + y 2 ) y (3) V(x, y) = x 2 + y, x ( 2 x 2 + y 2 ) y 2 x 2 +1 (4) V(x, y) = (x 2 + y 2 +1), 2xy 2 (x 2 + y 2 +1) 2 1.2 [4] = {(x, y) R 2 y 2 = x 2 (x +1)} ( ) [5] 1:1 (1) = {(x, y) R 2 cos x + y =0} (2) = {(x, y) R 2 3x 2 +4y 2 =1} (3) = {(x, y) R 2 ye x =1} [6] u 2 1 +u2 2 =1 [7] V (1) V(u) du (2) V(u) du V(u) ds(u).

3 (3) ( ) (1) V(x, y) =(x, 0) : (0, 0) (1, 0) (1, 0) (1, 1) (2) V(x, y) =(x, 0) : (0, 0) (0, 1) (0, 1) (1, 1) (3) V(x, y) =(y, 0) : (0, 0) (1, 0) (1, 0) (1, 1) (4) V(x, y) =(y, 0) : (0, 0) (0, 1) (0, 1) (1, 1) (5) V(x, y) =(y, x), : (1, 0) (0, 0) (6) V(x, y) =(y, x), : (x(t),y(t)) = (e t cos t, e t sin t), 0 t T T >0 (7) V(x, y) =(y, x), : (1, 0) (0, 0) (8) V(x, y) =(y, x), : (x(t),y(t)) = (e t cos t, e t sin t), 0 t T T >0 (9) V(x, y) =(x, y), : x 2 + y 2 =1 (10) V(x, y) =(y, x), : x 2 + y 2 =1 (11) V(x, y) =( y, x), : x 2 + y 2 =1 [8] V(x, y) =(2x, 3x + y) = {(x, y) R 2 1 4 x2 + y 2 =1} V(u) du [9] u V(x, y) =(x, y) : (, 0] R 2 t (e t cos t, e t sin t), t 0, V(u) du 1.3 grad [10] f, g grad fg= f grad g + g grad f [11] (1) V(x, y) =(y, x), (x, y) R 2, (2) V(x, y) =( y, x), (x, y) R 2,

4 1.4 rot Green [12] y = x 2 [13] } (1) = {(x, y) x2 a + y2 2 b =1 2 } (2) = {(x, y) x2 a y2 2 b =1 2 [14] 1:1 V P a>0 V (P ) a P V(u) n(u)du a [15] u (rot u) (1) u(x, y) =(x, y). (2) u(x, y) =(y, x). y (3) u(x, y) =( x2 + y, 2 y (4) u(x, y) =( x 2 + y, 2 x x2 + y 2 ). x x 2 + y 2 ). [16] f : (0, ) R R 2 \{(0, 0)} V(x, y) =( yf( x 2 + y 2 ),xf( x 2 + y 2 )) rot V(x, y) =1 R 2 \{(0, 0)} f [17] (1) V(x, y) = 1 ( y, x) rot V 2 (2) V ( 1 ) rot V =0 [18] (1) 1 (1, 0) 1 dxdy = 1 xdy)= D 2 D( ydx+ 1 xdy 1 ydx 2 D 2 D

5 (2) 1 (1, 0) ( 1, 0) (1, 0) 1:1 1 xdy 1 ydx=0 2 2 [19] U R 2 () F ( =(f 1,f 2 ): U R 2 \{0} 1 f1 U V F = f1 2 + f2 2 x f 2 f 2 x f f 1 1, y f 2 f ) 2 y f 1 (1) U rot V F =0 (2) U = {(x, y) R 2 1 2 <x2 + y 2 < 3 2 } F (x, y) = 1 x 2 +y 2 (x, y) V F (3) u(t) = (cos t, sin t) V F 2π 0 V F (u) du (4) F ˆF : R 2 R 2 \{0} U F [20] U = R 2 \{(x, 0) R 2 1 x 1}V(x, y) = ( y, x 1) (x 1) 2 + y2 1 (x +1) 2 + y ( y, x +1) 2 1 {(x, y) x 2 + y 2 =4,x 0} y {(0,y) 2 y 2} 2 {(x, y) (x 1) 2 + y 2 =16} 1 (1) V 2 (x, y) = (x +1) 2 + y ( y, x +1) 2 V 2 (u) du =0 1 1 (2) V 1 (x, y) = ( y, x 1) V(u) du = V (x 1) 2 + y2 1 (u) du 1 2 (3) f : U R U grad f = V (4) lim n (f(0, 1 n ) f(0, 1 n )) = 1 V(u) du [21], n, n N, u : [0, 1] R 2, u n : [0, 1] R 2, n N, u n u V R 2 (1) d u n d u lim V(u n ) du n = V(u) du dt dt n n (2) ɛ>0 Ω ɛ R 2 ɛ Ω ɛ 2ɛ ɛ A Ω ɛ 1 ɛ 1 [5, 1.9 (2)]

(3) D Ω ɛ D ɛ A rot V dx dy D A sup rot V(x, y) ɛ (x,y) D (4) Ω ɛ ɛ V du V du A sup rot V(x, y) ɛ ɛ (x,y) D (5) sup u n (t) u(t) <ɛ t [0,1] V du n V du A sup rot V(x, y) ɛ n ɛ (x,y) D (6) d u n d u dt dt lim V n n du = n 6 V du [22] Planimeter (Amsler ) planimeter 1.5 div Gauss [23] u (div) (1) u(x, y) =( y, x). (2) u(x, y) =(x, y). x (3) u(x, y) =( x2 + y, y )((x, y) (0, 0)). 2 x2 + y2 x (4) u(x, y) =( x 2 + y, y )((x, y) (0, 0)). 2 x 2 + y2 (5) u(x, y) =(xlog x 2 + y 2,ylog x 2 + y 2 )((x, y) (0, 0)). [24] f : (0, ) R R 2 \{(0, 0)} V(x, y) =(xf( x 2 + y 2 ),yf( x 2 + y 2 )) div V(x, y) =0 R 2 \{(0, 0)} f k f(r) =r k, r>0, k [25] f 1 V 1 (1) div(f V) = (grad f) V + f div V

7 (2) rot(f V) = (grad f) V + f rot V 2 U =(U 1,U 2 ), V =(V 1,V 2 ) U V = U 1 V 2 U 2 V 1 [26] f 2 V 2 (1) rot grad f =0 (2) div grad f = 2 f x + 2 f 2 y 2 [27] [23] V (1) (2) (±1, ±1) 4 V nds [28] [23] V Gauss (0, 0) ɛ Gauss 1.6 [29] θ ( ) ( x x(x,y ) = y y(x,y ) ) ( = cos θ sin θ sin θ cos θ )( x y ) V rot V [30] V V(u) n ds(u) [31] f V grad f, rot V

8 2 2.1 grad, div, rot [32] u v R u v u, v, u v u v u =(1, 0, 0) v {(1, 0, 0), (0, 1, 0), (0, 0, 1)} u v [33] (1) u =(1, 1, 2), v =(2, 0, 1), w =(1, 0, 3) u (v w), v (w u), w (u v), u (v w), (u v) w (2) u (v w) [34] u (v w) u v v 0 [35] 3 u, v, w u (v w) =(u w)v (u v)w [36] u (v w) =(u v) w 0 u, v, w [37] u 0, v u v =0 v = u w w [38] u, v, A 3 3 t à A Ã(u v) =Au Av [39] f, g 1 U, V 1

9 (1) grad(f g) = (grad f) g + f grad g (2) div(f V) = (grad f) V + f div V (3) rot(f V) = (grad f) V + f rot V (4) div(u V) = (rot U) V U rot V (5) rot(u V) =(V grad)u + U (div V) (U grad)v V (div U) [40] f 2 V 2 (1) rot grad f =0 (2) div grad f = 2 f x + 2 f 2 y + 2 f 2 z 2 (3) div rot V = 0 (4) rot rot V = grad(div V) ( V x, V y, V z ) 2.2 [41] S 2 = {(x, y, z) R 3 x 2 + y 2 + z 2 =1} ϕ(s, t) = (cos s sin t, sin s sin t, cos t) U = {(s, t) R 2 0 <s<2π, 0 <t<π} U 1 :1 U U = S 2 \{(x, y, z) R 3 x 0, y=0} ϕ 2 (s, t) = (cos s sin t, cos t, sin s sin t) U 2 = {(s, t) R 2 π<s<π, 0 <t<π} [42] ϕ(s, t) =(s 2,t 2,st) ϕ Dϕ rank 2 ϕ [43] (0, 0, 1) x y = {(x, y, 0) x 2 + y 2 =1} z [44] S = {(x, y, z) x 2 + y 3 + z 4 =0} (0, 0, 0) (0, 0, 0) S

10 [45] S = {(x, y, z) R 3 ax + by + cz = d} (1) P 0 =(x 0,y 0,z 0 ) S 1 S (x, y, z) S a(x x 0 )+b(y y 0 )+c(z z 0 )=0 (2) S P P 0 P v (a, b, c) v λ R v = λ(a, b, c) 1 (3) 1 P 0 2 ( ) 2 2 [46] S = {(x, y, z) x 2 + 1 4 y2 + 1 9 z2 =1} [47] f : R 2 R 1 ϕ(s, t) =(s, t, f(s, t)) ϕ : R 2 R 3 ϕ S S f [48] S 2 R 3 ( ) ϕ : U R 3 U = {(s, t) 0 <s<2π, 0 < t<π} ϕ(s, t) = (cos s sin t, sin s sin t, cos t) ϕ : U R 3 U = {(s, t) s 2 + t 2 < 1} ϕ (s, t) =(s, t, 1 s 2 t 2 ) W U W U ψ : W W ϕ ψ(s, t) =ϕ(s, t), (s, t) W [49] [41] [50] E ds E V E V nds f E fds E [51] S = {(x, y, z) x 2 +y 2 +z 2 =1,z>0} V(x, y, z) = (x, y, z) V nds S

11 (1) ϕ : U R 3 ; U = {(s, t) π 2 <t<π 2, 0 <s<π}, ϕ(s, t) = (sin t, cos s cos t, sin s cos t) (2) ϕ : U R 3 ; U = {(s, t) s 2 + t 2 < 1}, ϕ (s, t) =(s, t, 1 s 2 t 2 ) [52] ( [41]) [53] (0, 0, 1) x y = {(x, y, 0) x 2 + y 2 =1} z S V(x, y, z) =(0, 0, 1), (x, y, z) S, V nds S 2.3 Gauss Green [54] Ω={(x, y, z) R 3 z < 1, x 2 + y 2 < 1} div V(x, y, z) dx dy dz = V nds. Ω S [4, ] [55] Ω={(x, y, z) R 3 x 2 +y 2 +z 2 < 1} S = Ω ={(x, y, z) R 3 x 2 +y 2 +z 2 =1} V : R 3 R 3 V(x, y, z) =(x, y, z) div V(x, y, z) dx dy dz V nds Ω S [56] V : R 3 R 3 1 V(x, y, z) = (x, y, z) α>0 (x 2 + y 2 + z 2 ) α S V nds S [57] S = {(x, y, z) R 3 4x 2 +y 2 +z =1,z 3} V(x, y, z) =(3yz+7y+x, y, z+3) V nds S [58] S = {(x, y, z) x 2 + y 2 +4z 6 =4, z 0} V(x, y, z) =(e y,z,x 2 ) V nds S

12 2.4 Stokes [59] (1) {(x, y, z) R 3 1 <x 4 + y 2 + z 2 < 2} (2) {(x, y, z) R 3 0 <x 2 + z 4 < 2} (3) R 3 \{(x, y, 0) R 3 x 2 + y 2 =1} (4) R 3 \{(x, y, z) R 3 x 2 + y 2 + z 2 < 1} [60] S = {((2 + t cos s 2 ) sin s, (2 + t cos s 2 ) cos s, t sin s ) s R, t < 1} 2 S m V S rot V =0 u(s) = (2 sin s, 2 cos s, 0) S V dm =2 V du S [61] Ω = R 3 \{(0, 0,z) z R} ( ) ( y, x, 0) V(x, y, z) =,(x, y, z) Ω, Ω rot V =0 x 2 + y2 xy {(x, y, 0) x 2 + y 2 =1} V(u) du 0 [62] V(x, y, z) = 1 x2 + y 2 + z 23 (x, y, z) V R3 \{(0, 0, 0)} xy = {(x, y, 0) x 2 + y 2 =1} 2 S 1 = {(x, y, z) x 2 + y 2 + z 2 1, z 0}, S 2 = {(x, y, z) x 2 + y 2 + z 2 1, z 0}, S i V n ds, i =1, 2, (1) V R 3 \{(0, 0, 0)} A V n ds = V n ds S 1 S 2 (2) V n ds, i =1, 2, V S i

13 Appendix. A A.1 [63] (1) a, b N 1 a + bn 2 = O(N 2 ), N, (2) k>0 e N = O(N k ), N, [64] f : R n R ( x R n )( ɛ >0) δ >0; ( y R n ) x y <δ f(x) f(y) <ɛ A R f 1 (A) [65] (1) f : R n R {x n } R n lim f(x n)=f( lim x n ) n n (2) f lim f(x n )=f( lim x n ) n n [66] R [a, b] a 1,a 2, [a, b] [67] (1) R (0, 1) (2) I =[a, b] f : I R [68] [a, b] f a x 0 b f(x) f(x 0 ), a x b, [69] (1) (a, b)

14 (2) [a, b] ( ) [70] I f n : I R, n =1, 2, 3,, [71] I f n : I R, n =1, 2, 3,, A.2 [72] f R 2 2 x = r cos θ, y = r sin θ g(r, θ) =f(r cos θ, r sin θ) (1) g r g f f (r, θ) (r, θ) (r cos θ, r sin θ) (r cos θ, r sin θ) θ x y (2) f x f y g r g θ A.3 [73] [a, b] n [a, b] n +1 a = t 0 <t 1 < <t n 1 <t n = b ={t 0,,t n } = (t i t i 1 ) sup i {1,,n} f [a, b] lim 0 n f(ξ i )(t i t i 1 ) i=1 ( ) {ξ i } {ξ i } t i 1 ξ i t i,1 i n, b f(t) dt ( ) a

15 [74] [a, b] f n, n N, b lim n a f n (x) dx = b a lim f n(x) dx n [75] (1) xe y dx dy, D = {(x, y) 0 x 1, 0 y 1} D (2) xy dx dy, D = {(x, y) y 0, 0 x 2 + y 2 x} D (3) cos(x + y) dx dy, D = {(x, y) x 0, y 0, x+ y π/2} D (4) e x+y dx dy, D = {(x, y) 0 y x 1} D [76] (1) (x 2 + y 2 ) dx dy, D = {(x, y) x 2 + y 2 1} D (2) x2 + y 2 dx dy, D = {(x, y) x 0, y 0, x 2 + y 2 1} D (3) y 2 dx dy, D = {(x, y) x 2 + y 2 2x} D A.4 R n R n, m 2 n m (rank) 2 2 2 2 ( ) n 2 m 2 1 0 [77] R n R ( ) ( ) 1 (2 ) R

16 [78] (1) R 3 1 1 0, 1 1 1 (2) [79] (1) R n (2) R 3 [80] (1) R 2 1 (2) R 2 [81] (1) R n u =(u 1,,u n ), v =(v 1,,v n ), u v = u 1 v 1 + + u n v n 2 (2) (1, 1, 1), (2, 1, 0) R 3 [82] n 2 n 2 A =(a ij ) rank 2 A 2 2 a 11. a 12. a n1 a n2 A.5 n N ( ) x R n i =1,,n x i x i x =(x 1,,x n ) R 2, R 3 x, y d : R n R n R (d(x, y) = 0 if and only if x = y) R n d 2 (x, y) = x y = n (x i y i ) 2 i=1 x R n r>0 Ball(x, r) ={y R n y x <r} ( )

17 R n A R n ( x A) r >0; Ball(x, r) A D r > 0; Ball(x, r) D x D D D R n D c D D o ()D D c D c R n E R n r >0 Ball(c, r) (E \{c}) c E E [83] (1) (2) d (x, y) = x y = max i=1,,n x i y i [84] A R n A {Ball(x λ r λ ) λ Λ} A = λ Λ Ball(x λ,r λ ) [85] [86] D R n (1) x R n x D x D \{x} (2) D =((D c ) o ) c (3) D = D D c (4) D o = D \ D (5) (D c ) o = D c = D c \ D (6) D D = D D D [87] (1) R n R n (2) R n

18 [1] [2] [3] 2001 [4] 2001 ver. 20010519 [5] 17