,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

Similar documents
講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

( ) I( ) TA: ( M2)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) AGD 2) 7) 1



微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

tnbp59-21_Web:P2/ky132379509610002944

(Onsager )

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

第10章 アイソパラメトリック要素

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

201711grade1ouyou.pdf

LLG-R8.Nisus.pdf

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

: , 2.0, 3.0, 2.0, (%) ( 2.

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

量子力学 問題

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

スケーリング理論とはなにか? - --尺度を変えて見えること--

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Part I Review on correlation functions of the XXZ spin chain (1) H. Bethe(1930): Exact solutions of the one-dimensional Heisenberg model (XXX spin cha

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

Ł\”ƒ-2005

Note.tex 2008/09/19( )

第90回日本感染症学会学術講演会抄録(I)

H.Haken Synergetics 2nd (1978)

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

日本内科学会雑誌第102巻第4号

DVIOUT-fujin

プリント

chap10.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


TOP URL 1

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

chap7_v7.dvi

τ τ

薄膜結晶成長の基礎3.dvi

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

基礎数学I

( )

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

meiji_resume_1.PDF

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

all.dvi

支持力計算法.PDF


chap03.dvi

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

薄膜結晶成長の基礎4.dvi

koji07-01.dvi

2001 年度 『数学基礎 IV』 講義録

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz


[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

b3e2003.dvi

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

susy.dvi

untitled

19 /

( ) (, ) ( )

四変数基本対称式の解放

ohpmain.dvi

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

TOP URL 1

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

プログラム

構造と連続体の力学基礎

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Transcription:

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free Boundary Condition) H(σ 1... σ N ) = J N 1 i σ i σ i+1 (1) J exp( βh N ) Z N = σ 1...σ N exp[ βh(σ 1... σ N )] = σ 1...σ N N 1 i=1 exp(βjσ i σ i+1 ) (2) N = 3 σ 1 Z 3 Z 3 = exp(βjσ 1 σ 2 ) exp(βjσ 2 σ 3 ) = 2 cosh βj exp(βjσ 2 σ 3 ) σ 1 σ 2 σ 3 σ 2 σ 3 = 2 cosh βj 2 cosh βj σ 3 1 = 2(2 cosh βj) 2 (3) 1

Z N = 2(2 cosh βj) N 1... 1 Ψ N (σ N ) = exp[ βh(σ 1... σ N )] = (2 cosh βj) N 1 (4) σ 1...σ N 1 Ψ N (σ N ) σ N h Ψ N (σ N ) σ N σ N Ψ N ( Ψ N (σ) ) 2N 1 Z 2N 1 = σ Ψ N (σ) Ψ N (σ) = σ (2 cosh βj) 2N 2 = 2(2 cosh βj) 2N 2 (5) 2N 1 Z 2N 1 N 1 Ψ N 2N 1 T (σ σ ) = exp(βjσσ ) (6) 2N Ψ N (σ) Z 2N = Ψ N (σ) T (σ σ ) Ψ N (σ ) σσ = σ Ψ N (σ) Ψ N+1 (σ) (7) Ψ N (σ) Ψ N+1 = T Ψ N (8) Z 2N 1 Z 2N λ = Z 2N Z 2N 1 = Ψ N T Ψ N Ψ N Ψ N (9) Ψ N Ψ N Ψ N T Ψ N 2

λ 1 λ N λ λ... 1 Z 2N /Z 2N 1 2 cosh βj N Ψ N (σ) 2 2 2 Ising Model Ising σ i 2 Ising i 2 H = J σ i σ j (10) {ij} {ij} Z = exp( βh) (11) {σ} {σ} 1 (2) Z 2? 2 Ising 4 45 Z W (σ a σ b σ c σ d ) = exp [βj(σ a σ b + σ b σ c + σ c σ d + σ d σ a )] (12) Z = σ a σ b σ c σ d W (σ a σ b σ c σ d ) = (cosh βj) 4 + (sinh βj) 4 (13) 3

4 1 Ising (6) 1 Ising T Z Z = Tr T 4 (14) 12 4 4 Z ( ) C(σ a σ b ) = σ c σd W (σ a σ b σ c σ d ) (15) C(σ a σ b ) W ( suchi suri chi-ri...) C Z = C(σ σ ) C(σ σ ) C(σ σ ) C(σ σ ) (16) σσ σ σ C 2 Z = Tr C 4 (17) (14) C (Corner Transfer Matrix, CTM) 40 4

CTM ( ) C P (σ a σ b σ c ) = σd W (σ a σ b σ c σ d ) (18) P 3 2 P σ b (... ) P C W C 2 C 2 (σ a σ a σ b σ b) = C(σ σ )P (σ a σ σ)p (σ σ σ b )W (σ σ σ aσ b) σσ σ σ (19) 40 Z = Tr (C 2 ) 4 84 24 C 3 (σ a σ aσ a σ b σ b σ b ) Z = Tr (C 3) 4 C 3 P P 2 (σ a σ a σ b σ c σ c) = σ P (σ a σ σ c )W (σσ aσ b σ c) (20) ( P W ) C 2 W C 3 = C 2 P P W (21) P C 5

1 2 (9) T 2N = P N P N, T 2N+1 = P N W P N (22) 2N 2N + 1 : T 7 = T 2 3+1 Ψ 2N = C N C N, Ψ 2N+1 = C N P N C N (23) λ 2N = Ψ 2N T 2N Ψ 2N Ψ 2N Ψ 2N, λ 2N+1 = Ψ 2N+1 T 2N+1 Ψ 2N+1 Ψ 2N+1 Ψ 2N+1 (24) λ 2N λ 2N+1 γ = λ 2N+1 λ 2N = (Ψ 2N+1 T 2N+1 Ψ 2N+1 )(Ψ 2N Ψ 2N ) (Ψ 2N T 2N Ψ 2N )(Ψ 2N+1 Ψ 2N+1 ) (25) γ 1? (Baxter ) 6

: N = 2 N γ N N C N 2 N?! 3 N σ σ σ σ... {σ σ σ σ...} η (26) η 1 m A(σ σ σ σ... η) A 7

C N P N C N (ξ η) = C N (σ a... σ b...)a(σ a... ξ)a(σ b... η) (27) P N (ξ σ b η) = P N (σ a... σ b σ c...)a(σ a... ξ)a(σ c... η) 2 ( ) A A C N = A C N A, PN = A P N A (28) C N C N P N P N A A 4 ρ = (C N ) 4, Tr ρ = Tr (C N ) 4 = Z (29) C N 2 Ising ρ O ( )[6, 7] ρ(σ a... σ b...) = α ζ O(σ a... ζ) O(σ b... ζ) (30) ζ α ζ m Z = Tr ρ = 2 N α ζ ζ=1 ζ=1 m α ζ = Z (31) (29) C N ρ ρ α ζ C N 4 α ζ m ζ m Z Z 8

O A... O(σ... ζ) ζ = 1 ζ = m A(σ... ζ) ρ ρ(ξ η) = A(σ a... ξ)a(σ b... η)ρ(σ a... σ b...) m = δ ξη α η (32) Z = Tr ρ = Tr (A ρa) = Tr (AA ρ) = Tr ( ˆP ρ) (33) ˆP = AA ˆP 2 = ˆP ( P N ˆP ) 4 ρ = (C N ) 4 A (22) T 2N = P N P N T 2N λ 2N = Ψ 2N T 2N Ψ 2N /Ψ 2N Ψ 2N Ψ 2N = C N C N N Ψ 2N T 2N Ψ 2N (σ a... ; σ c...) = C N (σ a... σ b...) C N (σ b... σ c...) (34) Ψ 2N 2 N Ψ 2N = (C N ) 2 = C N C N 9

1 η Ψ 2N = C N C N C N C N Φ 2N = C N AA C N = C N ˆP CN (35) Ψ 2N ˆP Φ 2N A Φ 2N Ψ 2N T 2N? λ = Φ 2N T 2N Φ 2N Φ 2N Φ 2N = [C N ˆP C N ] T 2N [C N ˆP CN ] [C N ˆP CN ] [C N ˆP CN ] (36) λ A Φ 2N Ψ 2N 2 A (36) λ A ( (36) ) Ψ 2N Φ 2N Ψ 2N Φ 2N Ψ 2N Ψ 2N Φ 2N Φ 2N (37) Φ 2N Ψ 2N 1 2 10

1 (Φ 2N Ψ 2N )(Ψ 2N Φ 2N ) (Ψ 2N Ψ 2N )(Φ 2N Φ 2N ) (38) 3 1 A ( ) 1 ( (31-33)) Φ 2NΨ 2N = [C N ˆP CN ] [C N C N ] = Tr (C N ) 4 ˆP = Tr ρ ˆP (39) 3 ( ) 2 A 3 5 2 Ising 2N L 2 (?) Ising Z = Tr (T 2N ) L = Tr (P N P N ) L (40) Z 2 L Tr (P N P N ) L = [ Tr (P N ) L ] [ Tr (PN ) L ] = Ψ NΨ N (41) 11

P N (σ... σ σ...) σ 2 N Ψ N L ( ) 2N + 1 ( ) τ τ [6, 7] λ = Tr (T 2N+1 )L Tr (T 2N ) L = Ψ N τ Ψ N Ψ N Ψ N = Ψ N Ψ N+1 Ψ N Ψ N (42) τ DMRG P N ( ) 2N Ψ N Tr (P N ) L P N P N = A P N A A P N ˆP Φ N = Tr (P N ) L ˆP (43) ˆP Tr (P N ˆP ) L Φ N ( ) Φ N Ψ N = Tr ρ ˆP ( ) Φ N τ Φ N /Φ N Φ N ( ) (Φ N Ψ N )2 /(Ψ N Ψ N )(Φ N Φ N )? Φ N Ψ N? ρ N 12

m ρ (?) ξ N L N τ τ 3 Ising [8, 2]... A Ψ N+1 = τψ N 2 3 ( ) N ( ) A Φ N τ λ = Φ N τ Φ N /Φ N Φ N [9] 13

6 A 4 A 2 4 A ( ) [?] 2 3 2 : http://quattro.phys.sci.kobe-u.ac.jp/nishi/publist.html DMRG http://quattro.phys.sci.kobe-u.ac.jp/dmrg.html [1] S. R. White: Phys. Rev. Lett. 69 (1992) 2863; Phys. Rev. B48 (1993) 10345. [2] Density-Matrix Renormalization, Springer Lecture Note in Physics 528, eds. I. Peschel, X. Wang, M. Kaulke and K. Hallberg, Springer 1999. [3] T. Nishino: J. Phys. Soc. Jpn. 64 (1995) 3598. [4] R.J. Baxter, J. Math. Phys. 9 (1968), 650; J. Stat. Phys. 19 (1978), 461; Exactly Solved Models in Statistical Mechanics (AcademicPress, London, 1982), p.363. 14

[5] T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 65 (1996) 891; J. Phys. Soc. Jpn. 66(1997) 3040. [6] X. Wang and T. Xiang: Phys. Rev. B56 (1997) 5061. [7] N. Shibata: J. Phys. Soc. Jpn 66 (1997) 2221; J. Phys. A: Math. Gen. vol.36 (2003) R381. [8] Ming-Chiang Chung, and Ingo Peschel; Phys. Rev. B 64 (2001) 064412 [9] in preparation (for ever?) 15