IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Similar documents
H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int


1

プログラム

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

news

本文6(599) (Page 601)

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

Public Pension and Immigration The Effects of Immigration on Welfare Inequality The immigration of unskilled workers has been analyzed by a considerab

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

2013 M

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

28 Horizontal angle correction using straight line detection in an equirectangular image

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

【HP用】26.12月号indd.indd

26.2月号indd.indd

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

26.1月号indd.indd

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

untitled

特集_03-07.Q3C

5b_08.dvi

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

9_18.dvi

IPSJ SIG Technical Report Vol.2009-DPS-141 No.23 Vol.2009-GN-73 No.23 Vol.2009-EIP-46 No /11/27 t-room t-room 2 Development of

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

2) 3) LAN 4) 2 5) 6) 7) K MIC NJR4261JB0916 8) 24.11GHz V 5V 3kHz 4 (1) (8) (1)(5) (2)(3)(4)(6)(7) (1) (2) (3) (4)

LMS NLMS LMS Least Mean Square LMS Normalized LMS NLMS AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N =

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

2. ICA ICA () (Blind Source Separation BBS) 2) Fig. 1 Model of Optical Topography. ( ) ICA 2.2 ICA ICA 3) n 1 1 x 1 (t) 2 x 2 (t) n x(t) 1 x(t

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

zsj2017 (Toyama) program.pdf


_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

Vol. 48 No. 3 Mar Evaluation of Music-noise Assimilation Playback for Portable Audio Players Akifumi Inoue, Shohei Bise, Satoshi Ichimura and

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

Vol. 23 No. 4 Oct Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

Vol.11-HCI-15 No. 11//1 Xangle 5 Xangle 7. 5 Ubi-WA Finger-Mount 9 Digitrack 11 1 Fig. 1 Pointing operations with our method Xangle Xa

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe


1 1 CodeDrummer CodeMusician CodeDrummer Fig. 1 Overview of proposal system c


11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

知能と情報, Vol.30, No.5, pp


10_08.dvi

2_05.dvi

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

兵庫県立大学学報vol.17

2_05.dvi

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

Ł\”ƒ-2005

研究論集Vol.16-No.2.indb

2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

2007-Kanai-paper.dvi

三石貴志.indd

Fig. 3 3 Types considered when detecting pattern violations 9)12) 8)9) 2 5 methodx close C Java C Java 3 Java 1 JDT Core 7) ) S P S

第10章 アイソパラメトリック要素

第90回日本感染症学会学術講演会抄録(I)

it-ken_open.key

Microsoft Word - toyoshima-deim2011.doc

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

Mhij =zhij... (2) Đhij {1, 2,...,lMhij}... (3)

Transcription:

1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation from a music signal recorded with a microphone array in a reverberant environment. To this end, we apply our signal processing method for suppressing diffuse noise, which utilizes symmetrical microphone arrangements called crystal microphone arrays. We show some results of experiments where the proposed method is applied to instrument separation in a reverberant environment. 1. 1 Graduate School of Information Science and Technology, The University of Tokyo 2 METISS group, IRISA-INRIA, France 1) / 2) 1 3) Wiener 4) Wiener 3),5),6) 7) 2 3 1 c 2009 Information Processing Society of Japan

4 2. 2.1 T H Hermite τ Z ω R α(τ, ω) β(τ, ω) φ αβ (τ, ω), E[α(τ, ω)β (τ, ω)] (1) (τ, ω) Φ (τ, ω), E[ (τ, ω) H (τ, ω)] (2) E[ ] 2.2 s(τ, ω) x m(τ, ω) v m(τ, ω) m s(τ, ω) x m (τ, ω) d m (ω) d m(ω) = e jωδ m (3) δ m m x m (τ, ω) = s(τ, ω)d m (ω) + v m (τ, ω) (4) x(τ, ω) = s(τ, ω)d(ω) + v(τ, ω) (5) x(τ, ω), [x 1 (τ, ω) x 2 (τ, ω)... x M (τ, ω)] T (6) d(ω), [d 1 (ω) d 2 (ω)... d M (ω)] T (7) v(τ, ω), [v 1(τ, ω) v 2(τ, ω)... v M (τ, ω)] T (8) M s(τ, ω) v(τ, ω) 2.3 Wiener 4),8) ŝ(τ, ω), w H (τ, ω)x(τ, ω) (9) E [ ŝ(τ, ω) s(τ, ω) 2] (10) ŝ o (τ, ω), E[s(τ, ω)x H (τ, ω)]e[x(τ, ω)x H (τ, ω)] 1 x(τ, ω) (11) = φ ss(τ, ω)d H (ω)φ 1 xx(τ, ω)x(τ, ω) (12) (1) (2) φ ss (τ, ω) Φ xx(τ, ω) φ ss (τ, ω), E [ s(τ, ω) 2] (13) Φ xx (τ, ω), E[x(τ, ω)x H (τ, ω)] (14) (12) ŝ o(τ, ω) y(τ, ω), dh (ω)φ 1 xx(τ, ω)x(τ, ω) (15) d H (ω)φ 1 y(τ, ω) φ yy(τ, ω) = dh (ω)φ 1 xx(τ, ω)φ xx (τ, ω)φ 1 [d H (ω)φ 1 (16) ] 2 1 = (17) d H (ω)φ 1 (12) (17) ŝ o (τ, ω) 4),8) ŝ o(τ, ω) = φ ss(τ, ω) dh (ω)φ 1 xx(τ, ω)x(τ, ω) φ yy (τ, ω) d }{{} H (ω)φ 1 }{{}, p(τ, ω) = y(τ, ω) ŝ o (τ, ω) y(τ, ω) Wiener p(τ, ω) 2.4 φ ss(τ, ω) Wiener p(τ, ω) φ ss (τ, ω) x(τ, ω) 7) (18) 2 c 2009 Information Processing Society of Japan

s(τ, ω) v(τ, ω) Φ xx (τ, ω) = φ ss (τ, ω)d(ω)d H (ω) + Φ vv (τ, ω) (19) Φ xx(τ, ω) φ ss(τ, ω) d(ω)d H (ω) d(ω) Φ vv (τ, ω) Φ vv(τ, ω) Φ xx(τ, ω) φ ss(τ, ω) Φ vv (τ, ω) Φ vv (τ, ω) (a) v m (τ, ω) φ vm v m (τ, ω) φ v1 v 1 (τ, ω) = φ v2 v 2 (τ, ω) = = φ vm v M (τ, ω) (20) (b) v m (τ, ω) φ vm v n (τ, ω) r mn m n r mn = r kl φ vm v n (τ, ω) = φ vk v l (τ, ω) (21) (1) (2) φ vmvn (τ, ω) Φ vv (τ, ω) (m, n) (a) Φ vv (τ, ω) (b) Φ vv (τ, ω) Φ vv(τ, ω) 1 Φ vv (τ, ω) 9),10) 1 1 (a) φ v1 v 1 (τ, ω) = φ v2 v 2 (τ, ω) = φ v3 v 3 (τ, ω) = φ v4 v 4 (τ, ω) =: α(τ, ω) (22) r 12 = r 21 = r 34 = r 43 (23) r 13 = r 31 = r 24 = r 42 (24) r 14 = r 41 = r 23 = r 32 (25) (b) φ v1 v 2 (τ, ω) = φ v2 v 1 (τ, ω) = φ v3 v 4 (τ, ω) = φ v4 v 3 (τ, ω) =: β(τ, ω) (26) φ v1 v 3 (τ, ω) = φ v3 v 1 (τ, ω) = φ v2 v 4 (τ, ω) = φ v4 v 2 (τ, ω) =: γ(τ, ω) (27) φ v1 v 4 (τ, ω) = φ v4 v 1 (τ, ω) = φ v2 v 3 (τ, ω) = φ v3 v 2 (τ, ω) =: δ(τ, ω) (28) 3 c 2009 Information Processing Society of Japan

(22) (26) (27) (28) Φ vv(τ, ω) α(τ, ω) β(τ, ω) γ(τ, ω) δ(τ, ω) β(τ, ω) α(τ, ω) δ(τ, ω) γ(τ, ω) Φ vv (τ, ω) = γ(τ, ω) δ(τ, ω) α(τ, ω) β(τ, ω) δ(τ, ω) γ(τ, ω) β(τ, ω) α(τ, ω) α(τ, ω) β(τ, ω) γ(τ, ω) δ(τ, ω) 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 10) Φ vv (τ, ω) U (19) (29) (30) U H Φ xx (τ, ω)u = φ ss (τ, ω)u H d(ω)d H (ω)u + U H Φ vv (τ, ω)u (31) U H Φ vv(τ, ω)u U H Φ xx(τ, ω)u u H mφ xx (τ, ω)u n = φ ss (τ, ω)u H md(ω)d H (ω)u n (m n) (32) u m U m u H mφ xx (τ, ω)u n u H md(ω)d H (ω)u n (32) φ ss(τ, ω) φ ss (τ, ω) [ ] u H m d(ω)d H u H (ω)u n m Φ xx(τ, ω)u n ˆφ ss (τ, ω), m n u H m d(ω)d H (ω)u n 2 m n 2.5 Wiener (33) φ ss (τ, ω) Wiener (33) ˆp(τ, ω), ˆφ ss(τ, ω) (34) ˆφ yy (τ, ω) ˆφ yy (τ, ω) Zelinski 3) φ yy (τ, ω) ˆφ yy(τ, ω), 1 M φ xm x M m (τ, ω) (35) m=1 y(τ, ω) φ yy(τ, ω) (35) (35) p(τ, ω) 0 p(τ, ω) 1 ˆp(τ, ω) 3. ˆp(τ, ω) 0, if ˆp(τ, ω) < 0 ˆp(τ, ω) 1, if ˆp(τ, ω) > 1 2 11) RT 60 270 ms SiSEC 12) 6 s 16 khz (15) (34) Fourier 512 16 Hamming (15) Φ xx x(τ, ω)x H (τ, ω) (34) (33) Φ xx (τ, ω) (35) φ xm x m (τ, ω) 32 x(τ, ω)x H (τ, ω) x m(τ, ω)x n(τ, ω) (15) (33) d(ω) SN 4) LSD 13) 1 2 SN (36) 4 c 2009 Information Processing Society of Japan

2 @mic 1 LSD(dB) 1 2 3 (@mic 1) 10.1 9.2 7.8 4.8 4.8 6.2 4.6 6.1 6.5 2 1 @mic 1 SN (db) 1 2 3 (@mic 1) 4.4 8.9 1.2 4.1 1.1 4.6 10.8 3.9 12.5 (a) (b) LSD LSD SN 3 3@mic 1 3 (c) (d) 3 3 (c) 3 (a) 3 (b) @mic 1 (c) (d) (d) 5 c 2009 Information Processing Society of Japan

4. 3 8 db SN 1) M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques and Applications. Berlin: Springer-Verlag, 2001. 2) http://www.music-ir.org/mirex/2009/index.php 3) R. Zelinski, A microphone array with adaptive post-filtering for noise reduction in reverberant rooms, in Proc. ICASSP 88, New York, Apr. 1988, pp. 2578 2581. 4) K. U. Simmer, J. Bitzer, and C. Marro, Post-filtering techniques, in Microphone Arrays: Signal Processing Techniques and Applications, M. Brandstein and D. Ward, Eds. Berlin: Springer-Verlag, 2001, ch. 3, pp. 39 60. 5) I. A. McCowan and H. Bourlard, Microphone array post-filter based on noise field coherence, IEEE Trans. Speech Audio Process., vol. 11, no. 6, pp. 709 716, Nov. 2003. 6) S. Lefkimmiatis and P. Maragos, A generalized estimation approach for linear and nonlinear microphone array post-filters, Speech Commun., vol.49, no. 7 8, pp. 657 666, July Aug. 2007. 7) N. Ito, N. Ono, and S. Sagayama, A blind noise decorrelation approach with crystal arrays on designing post-filters for diffuse noise suppression, in Proc. ICASSP 2008, Las Vegas, Apr. 2008, pp. 317 320. 8) H. L. Van Trees, Optimum Array Processing. New York: John Wiley & Sons, 2002. 9) H. Shimizu, N. Ono, K. Matsumoto, and S. Sagayama, Isotropic noise suppression in the power spectrum domain by symmetric microphone arrays, in Proc. WASPAA, New Paltz, NY, Oct. 2007, pp. 54 57. 10) N. Ono, N. Ito, and S. Sagayama, Five classes of crystal arrays for blind decorrelation of diffuse noise, in Proc. SAM, Darmstadt, Germany, Jul. 2008, pp. 151 154. 11) J. A. Allen, D. A. Berkeley, Image method for efficiently simulating small-room acoustics, JASA, vol. 65, no. 4, pp. 943 950, Apr. 1979. 12) http://sisec.wiki.irisa.fr/tiki-index.php 13) I. Cohen, Multichannel Post-Filtering in Nonstationary Noise Environments, IEEE Trans. Signal Process., vol. 52, no. 5, pp. 1149 1160, May 2004. CREST 6 c 2009 Information Processing Society of Japan