3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

Similar documents
80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

薄膜結晶成長の基礎3.dvi


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

Gmech08.dvi

第10章 アイソパラメトリック要素

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

nosenote3.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

CoPt 17

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

薄膜結晶成長の基礎2.dvi


Part () () Γ Part ,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

30

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

Gmech08.dvi


ssp2_fixed.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

液晶の物理1:連続体理論(弾性,粘性)

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Untitled

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ


i

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

( ) I( ) TA: ( M2)

I ( ) 2019

TOP URL 1

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

i 18 2H 2 + O 2 2H 2 + ( ) 3K

0406_total.pdf

all.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

A 99% MS-Free Presentation

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

tnbp59-21_Web:P2/ky132379509610002944

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

untitled

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

untitled

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

構造と連続体の力学基礎

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Xray.dvi

B ver B

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


DVIOUT-fujin

CVMに基づくNi-Al合金の

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

pdf

( ) ) AGD 2) 7) 1

(Jackson model) Ziman) (fluidity) (viscosity) (Free v


1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

untitled

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Transcription:

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r ) g(r, r ) = i j( i) = C nn ( r r ) (3.3) δ(r r i )δ(r r j ) = N(N 1) δ(r r 1 )δ(r r 2 ) 25

= N(N 1) d 3 r 1 d 3 r N δ(r r 1 )δ(r r 2 )e βu(r 1,,r N ) d 3 r 1 d 3 r N e βu(r 1,,r N ) (3.4) 2 1 2 d 3 r 3 d 3 r U N e βu(r 1,r 2,r 3,,r N ) r U r r 1,r 2 fixed = 1 1 d 3 r 3 d 3 r N e βu(r 1,r 2,r 3,,r N ) = 1 β = 1 β d 3 r 3 d 3 r N e βu(r 1,r 2,r 3,,r N ) r 1 d 3 r 3 d 3 r N e βu(r 1,r 2,r 3,,r N ) ln r 1 = 1 ln β r N(N 1) 1 = 1 β d 3 r 1 d 3 r N e βu(r 1,,r N ) δ(r 1 r 1 )δ(r 2 r 2 ) d 3 r 1 d 3 r N δ(r 1 r 1 )δ(r 2 r 2 )e βu(r 1,,r N ) d 3 r 1 d 3 r N e βu(r 1,,r N ) r 1 ln g(r 1, r 2 ) (3.5) 2 r 1 2 g(r 1, r 2 ) r 1 V eff r 1 V eff (r 1, r 2 ) = dr 1 1 β r 1 ln g(r 1, r 2 ) = 1 β ln g(r 1, r 2 ) (3.6) r = r 1 r 2 2 V eff g(r) e βv eff(r) (3.7) V (r) 2 [ ] 2 U(r 1,, r N ) = 1 2 i j( i) V ( r i r j ) (3.8) Lennard-Jones [ (σ )12 ( ) ] σ 6 V (r) = 4ε (3.9) r r 26

V r 2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0 2.5 3.0 r 0.5 3.1: Lennard-Jones ( 3.1) 1 Pauli r < σ 2 van der Waarls 2 p2 Ĥ = N 2m + 1 2 i V ( r i r j ) (3.10) j( i) 1 2 N(N 1) V ( r 1 r 2 ) = 1 2 N(N 1) 1 V = 1 2 N(N 1) 1 V 0 d 3 r V (r)g(r) 4πr 2 dr V (r)g(r) (3.11) Ĥ = 3 2 Nk BT + 1 2 Nn 4πr 2 dr V (r)g(r) (3.12) [] (hard sphere) ( 3.2(a)) 0 V (r) { = for r r0 = 2a, = 0 for r 0 (3.13) 27

(a) (b) 3.2: (a) () (b) 2 (P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics, (Cambridge, Cambridge, 1995) ) Q i = q i P i = p i 2mkB T (3.14) 6N {P i, Q i } V hs σ = V hs /V 3.2(b) 2 σ = 0.638 hcp(hexagonal close packed) fcc(face-centered cubic) σ = 0.7405 σ = 0.495 1 σ = 0.545 fcc Alder f kt 1 0.75 0.5 0.25 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Η -0.25-0.5-0.75 (a) -1 (b) 3.3: (a) (b)2 28

3.4: Alder (B. J. Alder and T. E. Wainwright, Phase transition in elastic disks, Phys. Rev. 127, 359 (1962)) Alder ( ) : 3.2 ( ) [] R {li } = l 1 a 1 + l 2 a 2 + l 3 a 3 (3.15) {l i } = {l 1, l 2, l 3 } {a i } ( 3.5) T = R {li } R {l i } (3.16) T ˆn(r + T ) = ˆn(r) (3.17) 29

3.5: [] T e ig T = 1 (3.18) G (reciprocal lattice) a 2 a 3 b 1 = 2π a 1 (a 2 a 3 ), b a 3 a 1 2 = 2π a 2 (a 3 a 1 ), b a 1 a 2 3 = 2π a 3 (a 1 a 2 ) (3.19) m 1 m 2 m 3 G R( T ) a i b j = 2πδ ij (3.20) G = m 1 b 1 + m 2 b 2 + m 3 b 3 (3.21) (l 1 a 1 + l 2 a 2 + l 3 a 3 ) (m 1 b 1 + m 2 b 2 + m 3 b 3 ) = 2π(l 1 m 1 + l 2 m 2 + l 3 m 3 ) (3.22) (3.21) (3.17) f(r) f(r + T ) = f(r) f(q) = d 3 rf(r)e iq r = d 3 rf(r + T )e iq (r+t ) unit cell T = T e iq T unit cell d 3 rf(r + T )e iq r (3.23) e iq T T = N cell = V V cell for q = G = 0 for q G (3.24) 30

f(q) = V G δ q,g f G V = (2π) 3 δ(q G)f G (3.25) G fq = 1 d 3 r f(r)e iq r (3.26) V cell unit cell f(r + T ) = f(r) f(r) = d 3 q f(q)eiq r = f(g)e ig r (3.27) (2π) 3 G ˆn(r) = G ˆn(G) e ig r (3.28) [] {R i } (2.6) k U k = U a (q) i e iq R i = V G U ag δ q,g. (3.29) U ag = U a(g)/v cell i e iq R i = Nδ q,g dσ dω V 2 U ag 2 δ q,g (3.30) G 2 Bragg k = k k = k G (3.31) k 2 = k 2 + G 2 2k G G d m1,m 2,m 3 2k G = G 2, (3.32) 2 λ sin θ = 1 (3.33) d m1,m 2,m 3 31

Bragg [] S(q) = 1 V I(q) = S nn(q) + 1 V ˆn(q) 2 = S nn (q) + 1 d 3 re iq r ˆn(r) V = S nn (q) + 1 V V 2 ˆn G δ q,g G = S nn (q) + V ˆn G 2 δ q,g G 2 S nn (q) + (2π) 3 ˆn G 2 δ(q G) (3.34) G ˆn G 2 Bragg (diffuse scattering) dσ dω U a(q) 2 V S(q) (3.35) 1 q S(q) q = G δ 3.3 3 [ ] (liquid crystal) MBBA(N-(4-Methoxybenzylidene)-4-butylaniline) 3.6 l a MBBA ˆn (director) ˆn ˆn S = (ˆn ẑ) 2 1 3 = cos2 θ 1 3 (3.36) 32

3.6: MBBA(N-(4- )-4- ) S 0 (nematic) n(r) = const. (smectic) n(r) n 0 + 2nq 0 cos(q 0 z) (3.37) : q 0 2π/l S(q) nq 0 2 (2π) 3 (δ(q q 0 ẑ) + δ(q + q 0 ẑ)) (3.38) 1 (quasi-long-range order) Bragg (quasi Bragg peak) 2 1 [ ] SiO 2 () T g 3.4 1 33

(a) (b) (c) 3.7: (a) (b) Sierpinski (T. Vicsek, Fractal Growth Phenomena, (World Scientific, Singapore, 1992) ) (c) Koch 10 DNA 3 DNA 2 3.4.1 [ ] (fractal) Mandelbrot (self-similarity) 3.7 3.8 1 1 S. Miyashita, Y. Saito and M. Uwaha, J. Cryst. Growth 283, 533 (2005). 34

(a) (c) (b) (d) 3.8: 2 (a) 0.04 mol/l, (b) 0.06 mol/l (c) n g =0.1 (d) n g =0.15. 1024 900 [ ] (fractal dimension) 1 M l 1 2 2 3 3 M l d f (3.39) d f d b ( ) N(b) ( ) α N/α d f b b = αb N N = N α d f (3.40) d f 3.7 2 d f 2 3.7(a) (Viscek ) 1/3 5 (3.40) α d f α d f = ( b b ) df = N N (3.41) 35

(a) (b) (c) 3.9: DLA (a) 100 (b) 1000 (c) 10000 d f d f = ln(n /N) ln(b /b) = ln 5 ln 3 = 1.6094 = 1.465 (3.42) 1.0986 2 Sierpinski ( 3.7(b)) d f = ln 3/ln 2 = 1.0986/0.6931 = 1.585 1 Koch ( 3.7(c)) d f = ln 4/ln 3 = 1.3863/1.0986 = 1.262 [ ] (diffusion-limited aggregation: DLA) 2 DLA 3.9 () 3.8 ( 3.10) DLA d = 2 d f = 1.71 DLA 3.8 3.4.2 [] ( ) 3.11 ( 2 2 C.-H. Lam: http://apricot.ap.polyu.edu.hk/~ lam/dla/dla.html JAVA 36

3.10: 2 ) N R N = a i (3.43) i=1 a i a i = a 2 δ ij (3.44) R N = 0 (3.45) ( N ) 2 R 2 N N N N = a i = a i a j = a 2 = Na 2 R0 2 (3.46) i=1 i=1 j=1 i=1 R 0 : R 0 = Na n r P (r, n) dω P (r, n) = P (r a, n 1) 4π dω 3 P (r, n 1) = P (r, n 1) + a α + 1 3 3 2 P (r, n 1) a α a β + 4π α=1 x α 2 α=1 β=1 x α x β = P (r, n 1) + 1 3 3 2 P (r, n 1) 1 2 α=1 β=1 x α x β 3 a2 δ αβ + (3.47) a α = 0 a α a β = (a 2 /3)δ αβ n ( ) P (r, n) = a2 2 n 6 x + 2 2 y + 2 P (r, n) (3.48) 2 z 2 37

3.11: P (r, n) r t n = t/ t (3.48) P (r, t) t = D 2 P (r, t) (3.49) D D a2 t 6 (3.50) (3.48) P (r, 0) = δ(0) (3.51) P (r, n) = ( ) 3 3/2 ) exp ( 3r2 2πna 2 2na 2 (3.52) Gauss [ ] (3.52) (3.48) 38

[ ] n r W n (r) z (3.52) r W n(r) = z n (3.53) S n (r) = k B ln W n (r) = k B ln (z n P (r, n)) 3r 2 = S n (0) k B 2na 2 3r 2 S n (0) k B 2R 2 0 (3.54) F (r) = E T S = F (0) + 3 k B T r 2 (3.55) 2 R0 2 Hook ϕ R p p (1 ϕr ) N(N 1)/2 3 [ N(N 1) = exp ln (1 ϕr )] 2 3 ( exp N 2 ) ϕ 2 R 3 (3.56) S = k B ln p = k B 2 F 3 k B T R 2 + k BT N 2 ϕ 2 R0 2 2 R 3 N 2 ϕ R 3 (3.57) k B T R2 Na 2 + k BT ϕ N 2 R 3 (3.58) r R 5 ϕa 2 N 3 R N 3/5 (3.59) 39

( Flory ) 1/2 3/5 0.588 [ ] d 3/d + 2 [ ] p a = pa N = N/p α = p α d f = 1/p d f = 2 2 r N(r) 2 g(r) 1 dn(r) 4πr 2 dr 1 r 2 rd f 1 1 r 3 d f (3.60) 2 g(r) r α S(q) d d rg(r)e iq r dr r d 1 1 e iq r q α d r α dx x d 1 α e ix (3.61) α d = d f d f = 2 S(q) 1 q 2 (3.62) d f = 5/3 S(q) 1 q 5/3 (3.63) 40