master.dvi

Similar documents
4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

30

i Γ

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

IA


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( ) ,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

chap1.dvi


Maxwell

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

TOP URL 1

K E N Z OU

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s


現代物理化学 2-1(9)16.ppt

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

all.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =


( )

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Gmech08.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

08-Note2-web

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

chap03.dvi

i


1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) ( )

現代物理化学 1-1(4)16.ppt

2000年度『数学展望 I』講義録

Gmech08.dvi

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

Note.tex 2008/09/19( )

meiji_resume_1.PDF

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

QMI_10.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,


c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

構造と連続体の力学基礎


微粒子合成化学・講義

微粒子合成化学・講義

第3章

B ver B

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

Microsoft Word - 章末問題

II 2 II

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Untitled

量子力学 問題

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

KENZOU

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

Fr

2 p T, Q

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Transcription:

4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20

E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E ) E E p(e)/p(e ) = exp[s R (E t E)/k S R (E t E )/k] 4.2.1 E p(e) exp S R (E t E) p(e) exp S R (E t E)/k (4.1) 2 p(e) S R (E t E) E S R (E t E) = S R (E t ) E S R E + E=ER = S R (E t ) E T + (4.2) T S R (E R ) E R 21 = 1 T

E R E ( E/E R 1 ) (4.2) (4.1) E p(e) exp( βe), (β = 1/kT) (4.3) exp( βe) 1/kT β Liouville p(e i ) = 1 Z exp( βe i) (4.4) H(q, p) p(q, p) exp[ βh(q, p)] 1 (4.4) Z Z = exp( βe i ) (4.5) i 4.2.2 (4.4) A = i p(e i )A(E i ) = i A(E i)e βei i e βei (4.6) i E = E ie βei i e βei 4.3 (4.4) Z (Partition Function) 22

(Sum over States) (4.4) H(q, p) Z Π i dq i dp i e βh(q,p) (4.7) H(q, p) e βh(q,p) E = 1 Z Z β = lnz β (4.7) Π Π n i=1a i = a 1 a 2 a n Σ 4.3.1 ρ(e) ρ(e) = i δ(e E i ) (4.8) E 0 E 1 E1 E 0 deρ(e) E E + δe ρ(e)δe E Ω(E) E Ω(E) = de ρ(e ), ρ(e) = dω(e) de Ω(E) E 3N/2 N ρ(e) Ω(E) ρ(e) = E3N/2 E = 3N 2 E3N/2 1 E 3N/2 S(E) ρ(e) ρ(e) Ω(E) = exp S(E)/k 23

: x = a x = dxδ(x a)f(x) = f(a) (4.8) f(x) = 1 E 0 E 1 E i 24

4.3.2 Helmholtz Helmholtz Z (4.5) Z = e βei = dee βe δ(e E i ) = dee βe ρ(e) i i = dee S(E)/k βe = dee βf(e) (4.9) F(E) = F(T) + f 2 2 (E E ) 2 + F(T) E F(T) = E TS(E ), S(E) E E=E E (4.9) Z = exp[ βf(t)] dee β[f2(e E ) 2 /2+ ] = 1 kt = exp[ βf(t) (1/2) ln(βf 2 /2π) + ] exp[ βf(t)] (4.10) (4.9) F(E) F(E) = E 3 NkT lne = NkT[f(ε) lnnkt] 2 f(ε) = ε 3 2 lnε f(ε) ε 6 F(T) E kt F(T) = 3 2 NkT 3 NkT ln(3nkt/2) (4.11) 2 (4.10) (3.8) T (4.10) F(T) F(T) F(T) = 1 β lnz, Z = e βf(t) (4.12) 25

4.0 3.0 f(ε) 2.0 1.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0 ε 6 f(ε) (4.10) F T = E T T S E E S = S (4.13) T S 4.4 7 V 0 N V 0 V 1 V 1 /V 0 N (V 1 /V 0 ) N V N S(E, V ) 8 2 4.4.1 8 A, B A, B E A, E B V A, V B E tot V tot 26

V 1 V 0 7 V 0 N E tot = E A + E B, V tot = V A + V B V E A, V A A E B, V B B 8 2 A, B Ω A, Ω B Ω A (E A, V A ) = exp[s A (E A, V A )/k], Ω B (E B, V B ) = exp[s B (E B, V B )/k] Ω A Ω B S A (E A, V A ) + S B (E B, V B ) 27

S A (E A, V A ) = S B(E B, V B ) E A E B (4.14) EB=E tot E A S A (E A, V A ) = S B(E B, V B ) V A V B (4.15) VB=V tot V A (4.14) 2 (4.15) 4.4.2 8 B 9 A δv A B W p E A = W = pδv A, E A V A = p δv A p E A, V A A 9 A E A V A ds A (E A, V A ) = S A(E A, V A ) E A ( pδv A ) + S A(E A, V A ) V A δv A = 0 S A E A 1/T A S A (E A, V A ) V A = p T 2 F F V S = (1 T E ) E V T S V (4.16) = p (4.17) 28

4.5 (4.13) (4.17) F(T, V ) F(T, V ) T F(T, V ) = S(T, V ), = p V df(t, V ) = S(T, V )dt pdv (4.18) S(T, V ) ds = 1 T de + p T dv, TdS = de + pdv S E F(T, V ) (4.10) F = E TS S F Helmholtz S = (E F)/T = 1 TZ = k i e βei Z E i e βei + 1 kt lnz T i ln(e βei ) + k i e βei Z lnz = k i (e βei /Z)ln(e βei /Z) = k i p i lnp i (4.19) (4.10) (4.5) (4.12) p i = e βei /Z 29

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) S = F(T) = k ln(1 + e β ) + kt e β T 1 + e β kt [ 2 = k ln(1 + e β ) + ] 1 kt 1 + e β (4.20) /kt T 0 = /k (4.20) e β 1, T T 0 S = k kt e β + 0, (T/T 0 0) e β = 1 kt +, T T 0 [ ] /kt S = k ln(2 /kt + ) + 2 + /kt + [ = k ln 2 2kT + ] 2kT + O(( /kt)2 ) 10 3 ln 2 kt (4.19) 30

1.0 S(T) 0.5 0.0 0.0 1.0 2.0 kt/ 10 4.6.1 2 1. q p q p h/2 q p q p = h 1 N 3 h 3N 1 = 1 h 3N Π i dr i Π j dp j dqdp (Action) h 31

2. 2 2 d 3 r 1 d 3 r 2 = V 2 L x 11 L 2 11 2 x 2 L x 2 L 2 1 1 2 0 L x 1 0 L x 1 11 N N! 4.6.2 T N H = 1 2m p2 i i 32

Z [ 1 Z = h 3N Π N N! i=1d 3 r i d 3 p i exp β ] p 2 i/2m i = V N ( ) 3N/2 2πm h 3N (4.21) N! β V N (3.11) F S C F = 1 [ ( ) ] 3 2πm β lnz = N β 2 ln + ln(v/h 3 ) lnn + 1 β S = F [ ( ) ( ) ] 3 2πm V T = Nk 2 ln + ln β Nh 3 + 1 + 3Nk/2 [ (2πm ) ] 3/2 V e 5/2 = Nk ln β Nh 3 (4.22) C = T S T = 3Nk/2 Sackur-Tetrode N! 2 (Extensive Variable) (Intensive Variable) (4.22) N! ln(v/n) lnv 2 N ln 2 λ p p = h/λ h kt/2 λ T h 2 2mλ 2 T = 1 2 kt [ S = Nk ln (2π) 3/2 e 5/2 v ] λ 3 = 32 ] [2πe Nk ln 5/3 TT0 h 2, T 2mv = 1 2/3 2 kt 0 v = V/N v 1/3 S/Nk 4.21 33

2.0 1.0 S(t)/Nk 0.0 1.0 2.0 3.0 0.00 0.02 0.04 0.06 0.08 T/T 0 12 Sackur-Tetrode 4.6.3 ω i N H(q, p) = ( ) 1 2m p2 i + mω2 i 2 q2 i i Z = 1 [ 1 h N Π i dq i dp i exp[ βh(q, p)] = Π i dq i dp i exp β ] h 2m p2 i βmω2 i qi 2 2 [ ( ) 1/2 ( ) ] 1/2 ( ) 1 2πm 2π 1 = Π i h β βmωi 2 = Π i β hω i (4.23) N! (4.23) F = 1 β lnz = kt i ln (β hω i ) S = F T = k i C = T S T = Nk ln (β hω i ) + Nk N! Extensive 34

4.6.4 µ i E, µ i B µ i E 13 z 1 ( ) h = µ 0 E cosθ, (µ 0 = µ i ) θ z φ (θ, φ) 1 z rot = 1 dφsin θdθ exp[βµ 0 E cosθ] = 2π dve βµ0ev, 1 = 4π βµ 0 E sinh (βµ 0E) (v = cosθ) Z 1 N zrot N F rot = N β lnz rot = NkT ln 4π sinh(βµ 0E) βµ 0 E (4.24) 35

S = F T = Nk ln 4π sinh(βµ 0E) + NkT βµ 0 E = Nk [ µ 0E [ ln 4π sinh(βµ 0E) βµ 0 E coth(βµ 0 E) + 1 βµ 0 E s(t) = ln[4πt sinh(1/t)] 1 t coth(1/t) + 1 kt 2 coth(βµ 0E) + 1 T ] = Nks(t) ] t = kt/µ 0 E s(t) 14 { ln(4π) + 1 5/6t s(t) 2, t 1 ln(4πt) 1/t, t 1 3 3.0 2.0 s(t) 1.0 0.0 1.0 0.0 0.5 1.0 1.5 2.0 t 14 z- Ω 1 µ z i = µ 0 βµ0e cos θ dω cosθe z rot (4.24) µ z i = N β i lnz r E = F E = Nµ 0L(y), (y = βµ 0 E) 36

L(y) Langevin L(y) = coth y 1 y Langevin y { y/3 y 1 L(y) 1 1 y kt µ 0 E 1 N i µ z i { µ0 T µ 0 E/k µ 2 0 E/3kT T µ 0E/k Debye µ z i /µ 0 t = kt/µ 0 E 15 1.0 0.5 0.0 0 1 2 3 4 5 t 15 : = µ 0 E z rot = e βεi = e βµ0e + e βµ0e = 2 cosh(βµ 0 E) i=1,2 F = N β ln[2 cosh(βµ 0E)] S = F T = Nk ln[2 cosh(βµ 0E)] Nk µ 0E kt tanh(βµ 0E) = Nks(t) s(t) = ln[2 cosh(1/t)] 1 t tanh(1/t) 37

t = kt/µ 0 E s(t) 14 16 H t kt/µ 0 H kt/µ 0 (H/2) = 2t s(2t) H T A A B C 3.0 2.0 B A s C D 1.0 0.0 0.0 0.5 1.0 1.5 2.0 t 16 38

4.6.5 He, Ne, Ar 2 2 3 6 6 ( 3) 3 2 ( ) 1 6 3 2 Lagrangian m 1, m 2 1, 2 R G r 1, r 2 17 m 1 r 1 + m 2 r 2 = 0, r 1 r 2 = r (4.25) r r 1 = m 2 M r, r 2 = m 1 M r, (M = m 1 + m 2 ) m 1 m 2 r 2 r 1 G R 17 (4.25) T 39

T = m 1 2 (Ṙ + r 1) 2 + m 2 2 (Ṙ + r 2) 2 = M 2 Ṙ2 + m 1 2 r 1 2 + m 2 2 r 2 2 = M 2 Ṙ2 + µ 2ṙ2 1, µ = 1 + 1 (4.26) m 1 m 2 µ (reduced mass) (r, θ, φ) r = (r cosφsin θ, r sinφsin θ, r cosθ) ẋ = ṙ cosφsin θ r sinφ φ sin θ + r cosφcos θ θ ẏ = ṙ sin φsin θ + r cosφ φ sin θ + r sin φcosθ θ ż = ṙ cosθ r sinθ θ µ 2ṙ2 = µ [ ṙ 2 + r 2 ( 2 θ 2 + sin 2 θ φ ] 2 ) (4.26) r V (r) L = T V (r) = M 2 Ṙ2 + µ 2 ṙ2 + 1 2 I( θ 2 + sin 2 θ φ 2 ) V (r), (I = µr 2 ) I r, θ, φ p r, p θ, p φ P = L Ṙ = MṘ, p r = L ṙ = µṙ, p θ = L = I θ, p θ φ = L φ = I sin2 θ φ h = P Ṙ + p rṙ + p θ θ + pφ φ L = P 2 2M + 1 2µ p2 r + V (r) + 1 2I ( p 2 θ + 1 ) sin 2 θ p2 φ M Z t Z 1 z N I r r r 0 Z = Z t z N, z = z rot z vib 40

z rot, z vib 1 z rot = 1 h 2 dθdp θ dφdp φ exp [ βh] = 1 [ h 2 dθdp θ dφdp φ exp β 2I (p2 θ + 1 ] sin 2 θ p2 φ) = 2πI βh 2 dφdθ sin θ = 8πI βh 2 β E rot E rot = N lnz rot β = N ln(8πi/βh2 ) β = NkT C rot = de rot dt = Nk 2 V (r) r = r 0 V (r) = V (r 0 ) + 1 2 V (r 0 )δr 2 +, δr = r r 0 r h v = V (r 0 ) + 1 2µ p2 r + 1 V 2 µω2 v δr2 +, ω v = (r 0 ) µ ω v E v = NkT, C v = de v dt = Nk 2 4 7Nk/2 5Nk/2 41

(k) 3/2 1 1 4 2 1 4.6.6 Gibbs 18 V A V B 18 V V A, V B A, B 2 N A, N B p m A, m B pv A = N A kt, pv B = N B kt p(v A + V B ) = (N A + N B )kt N A /V A = N B /V B = (N A + N B )/(V A + V B ) V N Sackur-Tetrode { [ (2πm ) ] } 3/2 e 5/2 S = kn ln β h 3 + ln V N (4.27) 42

2 Z = V ( A NA 2πmA N A!h 3NA β ) 3NA/2 V B N B N B!h 3NB ( 2πmB β ) 3NB/2 (4.28) V A V B A, B 2 N A, N B (4.27) Z = V NA N A!h 3NA ( 2πmA β ) 3NA/2 V NB N B!h 3NB ( 2πmB β ) 3NB/2 (4.29) (4.28) (4.29) V S = N A ln(v/n A ) + N B ln(v/n B ) N A ln(v A /N A ) N B ln(v B /N B ) = N A ln(v/v A ) + N B ln(v/v B ) (4.30) = N A ln(n/n A ) + N B ln(n/n B ) N A = N B N ln 2 Gibbs (4.29) Z = V NA+NB (N A + N B )!h 3(NA+NB) ( ) 3NA/2 ( 2πmA 2πmB β β ) 3NB/2 (4.31) (4.29) (4.31) N A!N B! (N A + N B )! (4.31) Gibbs 43