タンパク質を物性科学的に見た場合、単なるアミド結合の集合体であると片づけるにはもったいなさすぎる

Similar documents

< > Introduction to Basic Physical Chemistry 1,2 2 [ advanced [ [ [ [ [ KULASIS

< > Introduction to Basic Physical Chemistry 1,2 2 [ advanced [ [ [ [ [ KULASIS

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

本文/YA4278I

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

H8.6 P

untitled


Hideki MATSUOKA: An Introduction to Small-angle Scattering Fundamental aspects of small-angle scattering technique are duly explained from the very ba

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Database Center for Life Science Online Service [Department of Molecular Physiology, The Tokyo Metropolitan Institute of Medical Science, Honkomagome,

1...z04/08/.e2

Bio-No.57/3....

Database Center for Life Science Online Service Miho Shimizu, [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sap


放射線化学, 97, 29 (2014)

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

1_alignment.ppt

陽電子科学 第4号 (2015) 3-8

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

untitled

Database Center for Life Science Online Service Signal transduction of growth factor mediated by heparin heparan sulfate

Intercalation Compounds of Clays Chuzo K ATO and Kazuyuki K URODA Department of Applied Chemistry, School of Science and Engineering, Waseda Universit

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji


1) J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, C. S. Pote, "Landolt-BOrnstein Tables", New Series, Vol. 7, Springer, Heidelber

Japanese Journal of Applied Psychology

1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,


A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

光学

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

カイラル結晶化ver3pp.dvi

Database Center for Life Science Online Service Discovery, analysis and chemical mechanism of protein splicing

研究論集Vol.16-No.2.indb

20 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /0, No. +,,* -* (,**3) 20 * * Taste of Mentsuyu (a Japanese noodle soup) Depends on the Combination and P

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Database Center for Life Science Online Service (http : // taxonomy.zoology.gla.ac.uk/rod/treeview.html) Takaaki Abe, Michiaki Unno*, Tohru Onogawa*,

寄稿論文 高い発ガン活性を示す鉄キレートお構造特性 | 東京化成工業

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

1 2 2 (Dielecrics) Maxwell ( ) D H

FA FA FA FA FA 5 FA FA 9

% 95% 2002, 2004, Dunkel 1986, p.100 1

Perrett et al.,,,, Fig.,, E I, 76

<95AA8E718CA4838C835E815B D862E696E6464>


Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

(2003)

, 3 2 Marshall [1890]1920, Marshall [1890]1920

The function and structure of NAD kinase: the key enzyme for biosynthesis of NADP (H) Database Center for Life Science Online Service Key words Shigey

1

SEJulyMs更新V7

X線分析の進歩36 別刷

物理予稿01-

JFE.dvi


Ł×

Differentiation and search for palatability-factors of world-wide rice grains by PCR method Sumiko NAKAMURA, Hiroshi OKADOME, Koh-ichi YOZA, Kazutomo

π (FMO) [4] Ligand 4 FMO FMO Gordon Schmidt (DHODH) de novo DNA RNA T. cruzi DHODH X DHODH- T. cruzi [5] DHODH DHODH FMN FMN FMNH 2 2 3


寄稿論文 有機合成から現代の錬金術へ | 東京化成工業

Tf dvi


% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

DOUSHISYA-sports_R12339(高解像度).pdf

Vol.40 No.5△/△0 目次[三]10.23


KII, Masanobu Vol.7 No Spring

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

yakugaku-kot.ppt

Candida albicans In Vitro Diagnostics (13)--D-Glucan Determination Reagents

37-4.indd

2007 Vol.56 No.6 総説 丸山浩樹

研修コーナー

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

tnbp59-21_Web:P2/ky132379509610002944

農林業における野生獣類の被害対策基礎知識

結晶成長学からの提案

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

資源と素材

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

5) K. Irukayama, T. Kondo, F. Kai, M. Fujiki, Kuma. moto Med. J., 14, 157(1961). 6) K. Irukayama, M. Fujiki, F. Kai, T. Kondo, ibid., 15, 1(1962). 7)

Vol.53 No. 11 (2008) 1327


第5歯高松市総合計画.qxd

,, X Handy Type X Ray Fluorescence Element Analyzer Jun Kawai Department of Materials Science and Engineering, Kyoto University Handy X r


Newsome and Dowling, 2006 a) Frey et al., Newsome and Dowling (2006 b)2008) 2011 )

Structure and Strength of Acid-Base in Aqueous Medium Aritsune KAJI* and Masaru NAKAHARA* * Department of Chemistry, Faculty of Science, Kyoto Univers

日本内科学会雑誌第98巻第4号

会報35号表紙.pdf

untitled

Transcription:

Precise Functional Analysis of Biological Macromolecules Promoted by the Encounter of Crystallographic and Spectroscopic Molecular Structure Analyses Takamitsu Kohzuma*, Sachiko Yanagisawa, and Tomotake Niizeki Faculty of Science, Ibaraki University The three dimensional structure of protein molecule is an essential for the comprehension of numerous life phenomena and the industrial utilization of biological systems. It is important to determine the three dimensional structure of biological macromolecule components by a certain techniques, X-ray crystallographic structure analysis, neutron crystallographic structure analysis or NMR. Although these structure analyses are very sophisticated methods for the determination of the biological macromolecule, the spectroscopic techniques are very important for the complete understanding of the time-dependent biological phenomena accompanying with the structural alternation of the relevant functional components, such as proteins and nucleic acids. The UV resonance Raman spectroscopy is introduced as an example for the precise local structure analysis with the X-ray crystallographic structure of protein molecules. DNA X NMR X X X

H + Vol. 7 (No. 2), NMR

1000 O 2 O 2 O 2 T R T R T 215cm -1 R 221cm -1 T R T R Kitagawa T O 2 H + C 13 =C 14 K L M N O / Cu(II) Dave S Cu(II)-S - Cu-S - Kohzuma

EPR S 195 nm 210 nm 206.5 nm Kr + 413.1 nm 280 nm 235 nm 470 244 nm Ar + 488 nm 260 nm 260 nm 257 nm

(a) ph 4.0 (b) ph 6.9 (c) ph 11.0 (a) 244 nm 244 nm (b) 244 nm (a)

ph (b) (c) 244 nm 1616 cm -1 (Y8a) 1604 cm -1 1600 cm -1 pk a 880 cm -1 W17 NH 1360 / 1340 cm -1 I (1360) / I (1340) 1 1 C α C β -C 3 C 2 2 χ 2,1 11 NCN ND 12 N ph* pk a 1602 cm -1 C 4 C 5 C α C β -C 4 C 5 χ 2,1 13 1385 cm -1 1350 cm -1 1602-1 cm C 4 C 5 1580 1560 cm -1 14 10 8

T R ph 229nm Bohr 15 Nagai His 87 16 (HRP) IX 6 His42( His) Arg38 Asn70 2.0 X Hashimoto 17 SOD O - 2 O 2 H 2 O 2 SOD O OD 18 235 nm 19 14000 124 600 nm Cys78 Met86 His40 His81 20

244 nm H 2 O D 2 O H81 M86 Cu C78 H40 (a) (b) Cu(II)PAz 235 nm Cu(II)PAz 1612 cm -1 1206 cm -1 1176 cm -1 1469 cm -1 1448 cm -1

1384 cm -1 His6 1404 cm -1 1283 cm -1 (Cu(I)PAz) 1384 cm -1 1408 cm -1 His81 244 nm Cu(II)PAz 1384 cm -1 Cu(I)PAz 15 cm -1 Cu(I)PAz 21 (II) (II) ( ) Cu(II)PAz Cu(I)PAz

(235 nm (235 nm ) ) (235 nm ) (235 nm )

Photosystem I Photosystem II 22 Photosystem I Freeman 23 Freeman

24 Sykes 25 acidic patch acidic patch Ubbink 26 Hirota 27 597 nm 590 nm 387 mv 20 mv 28 28 29 Yamauchi 30 acidic patch

31 Kostic

Freeman Kostic Ubbink Dennison Vila Sykes References 1. 7, 1-17 (2001). 2. A. T. Tu. 3. K. Nagai, T. Kitagawa and H. Morimoto, J. Mol. Biol., 136, 271 (1980). 4. S. O. Smith, J. Lugtenburg, R. A. Mathies, J. Membrane Biol., 85, 95 (1985). 5. B. C. Dave, J. P. Germanas, R. S. Czernuszewicz, J. Am. Chem. Soc., 115, 12175-12176 (1993). 6. T. Kohzuma, J. Biol. Chem. 270, 43, 25733-25738 (1995). 7. T. Kitagawa, Prog. Biophys. Molec. Biol., 58, 1 (1992). 8. H. Takeuchi, Y. Kimura, I. Koitabashi and I. Harada, J. Raman Spectrosc., 22, 233-236, (1991) 9. H. Takeuchi, N. Watanabe, I. Harada, Spectrochim. Acta, 44A, 749-761 (1988). 10. I Harada and H. Takeuchi, in R. J. H. Clark and R. E. Hester (Eds.), Spectroscopy of Biological Systems, John Wiley & Sons Ltd., 113-175 (1986). 11. M. Tasumi, I. Harada, T. Takamatsu, S. Takahashi, J. Raman Spectroscopy, 12, 149-151

(1982). 12. L. M. Markham, L. C. Mayne, B. S. Hudson, M. Z. Zgierski, J. Phys. Chem., 97, 10319-10325 (1993). 13. H. Takeuchi, Y. Kimura, I. Koitabashi and I. Harada, J. Raman Spectrosc., 22, 233-236, (1991). 14. T. Miura, T. Satoh, A. Hori-i and H. Takeuchi, J. Raman Spectrosc., 29, 41-47 (1998). 15. X. Zhao, D. Wang, T. G. Spiro, J. Am. Chem. Soc. 120, 8517-8518 (1998). 16. M. Nagai, M. Aki, R. Li, Y. Jin, H. Sakai, S. Nagatomo, T. Kitagawa, Biochemistry, 39, 43, 13093-13105 (2000). 17. S. Hashimoto and H. Takeuchi, J. Am. Chem. Soc., 120, 11012-11013(1998). 18. S. Hashimoto, K. Ono, H. Takeuchi, J. Raman. Spectrosc., 24, 969-975 (1998). 19. K. Sato, S. Nagatamo, C. Dennison, T. Niizeki, T. Kitagawa, T. Kohzuma, Inorg. Chim. Acta, in press. 20. T. Inoue, N. Nishio, S. Suzuki, K. Kataoka, T. Kohzuma, Y. Kai, J. Biol. Chem., 274, 17845-17852 (1999). 21. S. Yanagisawa, M. Aki, T. Kitagawa, T. Kohzuma, unpublished results. 22. S. Katoh and A. Takamiya, Nature, 189, 665 (1961). 23. P. M. Colman, H. C. Freeman, J. M. Guss, M. Murata, V. A. Norris, J. A. Ramshaw, M. P. Venkatappa, Nature, 272, 319-324 (1978). 24. J. M. Guss, P. R. Harrowell, M. Murata, V. A. Norris, H. C. Freeman, J. Mol. Biol., 192, 361-387 (1986). 25. M. G. Segal, A. G. Sykes, J. Am. Chem. Soc., 100, 4585 (1978) 26. P. Crowley, G. Otting, B. G. Schlarb-Ridley, G. W. Canters, M. Ubbink, J. Am. Chem. Soc., in press. 27. S. Hirota, M. Endo, K. Hayamizu, T. Tsukazki, T. Takabe, T. Kohzuma, O. Yamauchi, J. Am. Chem. Soc., 121, 849-855 (1999). 28. T. Kohzuma, T. Inoue, F. Yoshizaki, Y. Sasakawa, K. Onodera, S. Nagatomo, T. Kitagawa, S. Uzawa, Y. Isobe, Y. Sugimura, M. Gotowda, Y. Kai, J Biol. Chem., 274, 11817-11823 (1999). 29. T. Inoue, M. Gotowda, H. Sugawara, T. Kohzuma, F. Yoshizaki, Y. Sugimura, Y. Kai, Biochemistry, 38, 13853-13861 (1999). 30. O. Yamauchi, A. Odani, T. Kohzuma, H. Masuda, K. Toriumi, K. Saito, Inorg. Chem., 28, 4066-4068 (1989). 31. E. V. Pletneva, D. B. Fulton, T. Kohzuma, N. M. Kostic, J. Am. Chem. Soc., 122, 1034-1046 (2000).