N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Similar documents
meiji_resume_1.PDF

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

201711grade1ouyou.pdf

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1

30

Note.tex 2008/09/19( )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


TOP URL 1

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

: , 2.0, 3.0, 2.0, (%) ( 2.

LLG-R8.Nisus.pdf

OHP.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

keisoku01.dvi

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

( ) ,

~nabe/lecture/index.html 2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

K E N Z OU

pdf

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

τ τ

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Microsoft Word - 11問題表紙(選択).docx


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


Part () () Γ Part ,

総研大恒星進化概要.dvi

高知工科大学電子 光システム工学科

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Z: Q: R: C: sin 6 5 ζ a, b

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

untitled

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

構造と連続体の力学基礎

December 28, 2018

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

量子力学 問題

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

i

chap10.dvi


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Gmech08.dvi

QMII_10.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

( )

untitled

arxiv: v1(astro-ph.co)

Untitled


数学Ⅱ演習(足助・09夏)

( ) ( )

chap1.dvi

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

master.dvi

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

TOP URL 1

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

/02/18

gr09.dvi

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

PDF

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

Transcription:

23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1)

24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/ L) p,t 2 f S T ( f/ T ) p,l 2.1 x L T 2.12.4 T 0 C 1 AB 20 C L 0 L/L 0

2.1 25 2.2 A B 2.2 2.4 ( ) [ ] f e ln f ln(f/t ) f = 1 = T ln T T p,l p,l (2.5) 2 < r 2 > 0 f e f = T d ln < r2 > 0 dt (2.6) 2.1 T = 298 K PE f e /f = 0.42 -CH 2 -CH 2 -CH 2 - PDMS f e /f = 0.20 -Si-O-Si-O-

26 2 2.1 T = 298 K f e /f d ln < r 2 > 0 /dt 10 3 (K 1 ) 0.18 0.60-1,4-0.13 0.44 0.20 0.67-0.06-0.20-0.42-1.41 0.26 0.87 2.1.2 2.3 L 20 C L 0 L 2.3 L L T=20 C L 0 L/L 0 L/L 0 1 % ( f/ T ) p,t 36% thermoelastic inversion

2.1 27 2.1.3 1805 J.Gough 1859 J.P.Joule 2.4 2.4 500% 10 a20% b

28 2 S ds = ( ) S dt + T p,l ( ) S dl (2.7) L p,t 1 C p T ( S/ T ) p,l 2 2.3 ds = C ( ) p f T dt dl (2.8) T p,l ds = 0 (dt ) S = T ( ) f dl (2.9) C p T p,l 2.2 2.2.1 2.5 P 2.5 1 topological neighbor

2.2 29 spatial neighbor < r 2 > 1/2 0 Γ Γ ( ) 4π 3 < r2 > 3/2 µ 0 V (2.10) µ V Γ = 25 100 < r 2 > 0 µ 1 Γ 1/ µ 2.2.2 f r 0 r 2.6 L x f x λ x 2.6yz λ y = λ z ( ) 3/2 3 P 0 (r 0 ) = 2π < r 2 exp ( 3r 0 2 ) > 0 2 < r 2 (2.11) > 0 r 0 < r 2 > 0 = na 2 n W.Kuhn

30 2 r 0 (λ x, λ y, λ z ) 1936 r 0 r = ˆλ r 0 (2.12) ˆλ λ x 0 0 ˆλ 0 λ y 0 (2.13) 0 0 λ z 2.12 ν r 0 r 0 + dr 0 νp 0 (r 0 )dr 0 r r + dr νp 0 (r 0 )dr 0 = νp (r)dr (2.14) P (r) r r 0 2.12 r φ(r) = 3k BT 2 < r 2 > 0 r 2 (2.15) F (ˆλ) = φ(r)νp (r)dr (2.16) 2.152.12 F (ˆλ) = 3νk BT 2 < r 2 (ˆλ r 0 ) 2 P 0 (r 0 )dr 0 > 0 = νk BT 2 < r 2 (λ 2 x + λ 2 y + λ 2 > z) < r 2 > 0 (2.17) 0 λ x = λ y = λ z = 1 F (ˆλ) F (ˆλ) F (1) F (ˆλ) = ν 2 k BT (λ 2 x + λ 2 y + λ 2 z 3) (2.18)

2.2 31 λ x = λλ y = λ z = 1/ λ f f = ( F/ (λl)) T f = νk BT (λ 1λ ) L 2 (2.19) L 2 σ σ = νk BT L 3 (λ 1λ 2 ) (2.20) L 2 /λ τ τ = νk BT L 3 ( λ 2 1 ) λ (2.21) ν/l 3 ρ M ν/l 3 = ρn A /M E ( ) σ E = λ = ρrt ( λ + 2 ) λ M λ (2.22) λ = 1 E = 3ρk BT M (2.23) T = 300 KM = 10 4 ρ = 1 g/cm 3 ν/l 3 = 10 4 mol/cm 3 E = 7.4 10 6 dyne/cm 2 9 10 11 dyne/cm 3 10 2.7

32 2 f λ S L.R.G.Treloar 1954 2.6.1 S 1 2.7 2.7 σ/(λ 1/λ 2 ) λ 1 λ 1 C 1 C 2 σ = 2C 1 ( λ 1 λ 2 ) + 2C 2 ( 1 1 λ 3 ) (2.24) Mooney Rivlin C 2 C 2

2.2 33 2.2.3 ν 1946 M M c ρ ν = ρ/m c 2ρ/M ν eff = ρ ( 1 2M ) c M c M (2.25) 2.8 τ = ρrt M c ( 1 2M ) ( c λ 2 1 ) M λ (2.26) 1 2M c /M 2.8

34 2 2.9 J.Scanlan L.C.Case 1960 (i, k) i k (i, k) µ ik i 3 1 2.9 2 2.9 1 i i 3 ν eff = 1 2 2k k=2 i=3 iµ ik (2.27) µ ik??

2.3 35 ( i', k' ) ( i, k ) 2.10 i 3i 3 2.2.4 T 0 λ 0 = 1 + ɛ 0 (ɛ 0 1) σ = 3νk B T ɛ 0 T ɛ = ɛ 0 β 3 (T T 0) (2.28) ( β 1 V ) V T p { σ 3νk B T ɛ 0 β } 3 (T T 0) (2.29) ɛ 0 ( ) { σ = 3νk B ɛ 0 β } T ɛ 0 3 (2T T 0) (2.30) ɛ 0 = β 3 (2T T 0) (2.31) T 0 = 293 KT = 343 Kβ = 6.6 10 4 /K ɛ 0 = 0.086 8.6% 2.3

36 2 H.M.JamesE.Guth 1943 (1) (2) r < ( r) 2 >= 2 f < r2 > 0 (2.32) f f = 4 (3) ( F ) ph = ξ 2 k BT (λ 2 x + λ 2 y + λ 2 z 3) (2.33) ξ f ξ = ν(1 2/f) f = 4 ξ = ν/2 σ τ σ ˆλ 2.11 τ

2.3 37 τ τ σ τ 2.3.1 l l l f l 2.12 A f 2.12 A l µ l = f(f 1) l 1 σ τ ν l = f{1 + (f 1) + + (f 1) l 1 } = f[(f 1) l 1]/(f 2) τ A τ ( F ) micro = R l (f) ν l 2 k BT (λ 2 x + λ 2 y + λ 2 z 3) (2.34) R l (f) R l (f) µ l 1 ν l = (f 2)(f 1) l 1 (f 1) l 1 (2.35) l = 2 R 2 (f) = f 1 f (2.36)

38 2 J.Rehner 1943 l lim R l(f) = f 2 l f 1 (2.37) R (4) = 2/3R (3) = 1/2 σ σ τ µ l (τ, τ) ν l µ l µ l /ν l = (f 2)/(f 1) 1 µ l /ν l = 1/(f 1) R (σ, τ) (f 1)/f R = f 2 f 1 = f 1 f f 2 f 1 }{{} (σ,τ) + f 2 f 1 f 1 }{{} (τ,τ) (2.38) (τ, τ) R (f 2)/f ( F ) ph = ν 2 ( 1 2 ) k B T (λ 2 x + λ 2 y + λ 2 z 3 ) (2.39) f ν(1 2/f) ξ ( F ) ph = ξ 2 k BT (λ 2 x + λ 2 y + λ 2 z 3 ) (2.40) 2.3.2 2.17 F (ˆλ) = 3 νk BT 2 < r 2 0 >(< r2 > < r 2 0 >) (2.41) r r 0 < >

2.4 39 r = ˆλ r 0 r = r + r (2.42) r r < r 2 >=< r 2 > + < r 2 > (2.43) < r 2 > = ( 1 2 ) < (ˆλ r 0 ) 2 > (2.44a) f < r 2 > = 2 f < r2 0 > (2.44b) { ( < r 2 >= 1 2 ) } λ 2 x + λ 2 y + λ 3 z + 2 < r0 2 > (2.45) f 3 f ( F ) ph = ξ 2 k BT (λ 2 x + λ 2 y + λ 2 z 3 ) (2.46) ξ = (1 2/f)ν 2.4 ν ξ = ν(1 2/f) 3 L 0 V 0 = L 0 V dry φ c V dry /V 0 L (i) V i = (L (i) ) 3 φ V dry /V i

40 2 i f 3 i V f 2 L (0) L (i) L i f 1 V 0 V i 2.13 L x, L y, L z ˆλ λ x L x L 0 (2.47) V i = V = L x L y L z α x L x L (i) = λ α ( V0 V ) 1/3 λ x (2.48) x f ( ) 1/3 V λ x = α V 0 λ y = λ z = 1 ( ) 1/3 (2.49) V α V 0 f f = ( F/ λ x ) T f = Fk BT L 0 ( ( ) ) ( ) ( ) 2/3 V 1 FkB T V λ V 0 λ 2 = (α 1α ) L (i) V 2 0 (2.50) F ν ξ A= (L (i) ) 2 /α τ x τ x = Fk ( ) 2/3 ( BT V α 2 1 ) V α V 0 (2.51) reduced stress [ f ] [ f ] fφ 1/3 A dry (α α 2 )

2.4 41 ( FkB T [ f ] = V dry α ) φ c 2/3 (2.52) 2.14 2.14 α α Mooney Rivlin 2.15 α 2C 1 φ 2C 2 C 2 λ α 2.50 V 0 V V = V 0 (1 + β T ) λ = 1 + ɛ (ɛ 1) f = Fk j BT 1 + ɛ 1 + β T ff = 3Fk BT (ɛ β T ) (2.53) L 0 (1 + ɛ) 2 L 0 3 ɛ f «f = 3Fk BT {ɛ β T L 0 2 (2T T 0)} (2.54) ɛ

42 2 2.15 2.31 x, y τ x, τ y α x, α y λ x = α x (V/V 0 ) 1/3 λ y = α y (V/V 0 ) 1/3 λ z = (1/ α x α y )(V/V 0 ) 1/3 ««2/3 FkB T V τ x = 2 αx 2 1 «V V 0 αxα 2 y ««2 2/3 FkB T V τ y = 2 α 2 y 1 «(2.55) V V 0 α 2 xαy 2 α x = α y α 2.16 ««2/3 FkB T V τ = 2 α 2 1α «V V 4 0

2.5 43 y f y x α x αα y = 1 ««2/3 FkB T V τ x = 2 α 2 1α «V V «2 0 «2/3 FkB T V τ y = 2 1 1α «(2.56) V 2 V 0 2.16 2 2.5 V 0 L 3 0 = nνa 3 2.17n ν a x f V N 0 V = (N 0 + nν)a 3 V 0 /V φ x λ x yz λ y λ z q V/V 0 = λ x λ y λ z q = 1/φ λ x λ λ y = λ z = 1/ λφ F mix F el F = F mix + F el F mix = V a 3 k BT {(1 φ) ln(1 φ) + χφ(1 φ)} (2.57)

44 2 2.17 x f 0 F el = ν 2 k BT ( λ 2 + 2 ) λφ 3 µ ln φ (2.58) ln φ µ f = F/ (λl 0 ) fl 0 νk B T = λ 1 λ 2 φ (2.59) t φ = 1/λ 3 µ 0 = 0 F ln(1 φ) + φ + χφ 2 + 1 ( 1 n λ µ ) 2 φ = 0 (2.60) λ φ q 10 2.60 φ ( ) 1 2 χ φ 2 = 1 ( 1 n λ µ ) 2 φ (2.61)

2.5 45 µφ/2 q = nψτλ (2.62) χ 1/2 χ = ψττ τ > 0 t = 0 q = λ 3 λ q = (nψτ) 3/5 (2.63) 2.18 2.592.61φ λ ln{nψτ} 2.18 t σ = ln λ y ln λ x (2.64) σ = 1 4 ( 1 ln[nψτ] ) ln λ (2.65)

46 2 *1 0 < σ < 1/2 x yz 2.6 (1) (2) 2.6.1 a f Q 1 (f, T ) n Q 1 (f, T ) λ 0 (t) n (2.66) t fa/k B T λ 0 (t) = sinh t/t (2.67) *1 σ

2.6 47 R = f (nk BT ln λ 0 ) (2.68) na l R/na l = t ln λ 0(t) (2.69) t t = ψ(l) φ(l) = R 0 = nk B T f dr = nk B T t 0 l 0 t d l d t dt = nk BT ψ(l)d l [ t l t 0 ] ld t (2.70) φ(l) = nk B T [ψ(l)l ln λ 0 (ψ(l))] (2.71) R P 0 (R) = Ce βφ(l) = Ce ng(l) P 0 (l) (2.72) g(l) g(l) ln λ 0 (ψ(l)) + ψ(l)l (2.73) C C = 1 0 4πl 2 d le ng(l) (2.74) φ(r) F (ˆλ) = ν [φ(ˆλ R 0 ) φ(r 0 )]P 0 (R 0 )dr 0 (2.75) ˆλ R 0 P 0 (R 0 ) ν l R/na F (ˆλ) νk B T = n d l[g(ˆλ l) g(l)]p 0 (l) (2.76)

48 2 λ x = λλ y = λ z = 1/ λ ˆλ l = [λ 2 x 2 +1/λ(y 2 +z 2 )] 1/2 η(λ, θ)l η η(λ, θ) [( λ 2 + 1 ) cos 2 θ 1 1/2 (2.77) λ λ] L 0 f fl 0 = F (ˆλ)/ λ fl 0 νk B T = n 1 0 2πl 3 d l 1 0 d cos θ g( ˆλ l ) ζ(λ, θ) η(λ, θ) ψ(ηl)p 0(l) (2.78) g( ˆλ l ) λ = λ g(ηl) = g (ηl) dη dλ l = ψ(ηl) ζ η l (2.79) ζ(λ, θ) (2λ + 1λ 2 ) cos 2 θ 1 λ 2 (2.80) 2.19 λ 0 = e t2 /6 ln λ 0 = t 2 /6λ = t/3 t ψ(l) = 3 l g(l) = 3 l 2 (3 l) 2 /6 = 3 l 2 /2 ψ(ηl)ζ/η = 3 lζ R 1 d cos θζ(λ, θ) = 0 2(λ 1/λ 2 )/3 fl 0 /νk B T = λ 1/λ 2 λ 0 = (sinh t)/tln λ 0 = ln(sinh t/t)l = L(t) = coth t 1/t ψ(l) = L 1 (l) fl 0 νk B T = 2nπ 1 0 d l l 3 P 0 (l) 1 0 d cos θ ψ (ηl) ζ η (2.81) L.R.G.Treloar cos θ θ = 0x π/2y, z 1954 x, y, z θ = 0 ζ/η = 2θ = π/2 ζ/η = 1/λ 3/2 fl 0 νk B T = n 1 0 [ ψ(λl) 1 ( )] l λ ψ P 3/2 0 (l)4πl 3 d l (2.82) λ

2.6 49 l R 0 = n a l = l 0 n a/na = 1/ n [ ( fl 0 νk B T = n1/2 L 1 3 λ n 1/2 ) 1 ( )] 1 L 1 λ3/2 λ 1/2 n 1/2 (2.83) S 2.6.2 2.19 ζ 1 n nζ l R/nζat fa/k B T λ 0 (t) = σ + n exp ( ζ6 ) t2 (2.84) l = ζ t ln λ 0(t) = t 3 1 (2.85) 1 + σe ζ 6 t2 σ/u σ t = ψ(l) 2.78

50 2 2.6.3 λ 0 ( )} λ {λ uk v2 λ e αt uk ln 2αt λ e αt = v(1 v)uk sinh αt αt k exp( t 2 /6) α b/a u v λ 0 (t) t = ψ(l) 2.78