QMI_10.dvi

Similar documents
II

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

IA

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

QMI13a.dvi

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Note.tex 2008/09/19( )

( ) ,

Mott散乱によるParity対称性の破れを検証

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Gmech08.dvi

4/15 No.

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

02-量子力学の復習

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

QMI_09.dvi

QMI_10.dvi

untitled

30

Schrödinger I

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

I ( ) 2019

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

TOP URL 1

QMII_10.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

量子力学A

master.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

meiji_resume_1.PDF

II

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

ssp2_fixed.dvi

untitled

chap03.dvi

Report10.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


Gmech08.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

i

4‐E ) キュリー温度を利用した消磁:熱消磁

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Part () () Γ Part ,

Microsoft Word - 章末問題

all.dvi

notes.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

i

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Planck Bohr

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

eto-vol2.prepri.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


05Mar2001_tune.dvi

pdf

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k


85 4

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


all.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

高知工科大学電子 光システム工学科

The Physics of Atmospheres CAPTER :

PDF

Untitled


総研大恒星進化概要.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

³ÎΨÏÀ

( )

鉄筋単体の座屈モデル(HP用).doc


5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Transcription:

... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy density k Boltzmann constant f T ν 0

2 Max Planck ν E = hν (.2) f ( ) T ν [ 0 8 Js/m 3 ] 20 5 0 5 T = 000 K Rayleigh-Jeans Planck h = 6.62676 0 34 J s (.3) Planck constant ν ν +dν f T (ν) 0 0 50 00 50 200 ν [ THz ].: f T (ν) f T (ν)dν = 8πhν3 c 3 ( hν exp kt ) dν (Planck) (.4) f T (ν) (.4) (.). (.4) hν ( ) hν exp kt + hν kt + ( ) hν 2 + 2 kt h (.) (.4) ν λ = c/ν λ λ +dλ u T (λ) T u T (λ)dλ = 8πhc λ 5 ( hc exp λkt ) dλ (Planck) (.5) u T (λ) SI [J m 4 ] λ [J m 3 ] u T (λ).2 T = 4000 K 5000 K 6000 K 7000 K

.. 3 λ λ+dλ da z c c z θ c cos θ u T (λ) ccos θ 4π dω = sin θ dθ dϕ u T (λ)dλda c cos θ dω 4π. θ 0 π/2 ϕ 0 2π π/2 0 cos θ sin θ dθ = 2, 2π 0 dϕ =2π u ( ) T λ [ kj/m 4 ] 3000 2500 2000 500 000 500 0 0 500 000 500 2000 λ [ nm ].2: u T (λ) (c/4) u T (λ)dλda T λ λ +dλ s T (λ)dλ = c 4 u T (λ)dλ. (.6) u T (λ) λ λ max λ max T = 2.897796 0 3 m K (.7) Wilhelm Wien Wien s displacement law u T (λ) (.5) λ du T (λ) = 6π2 h 2 ( c 2π hc e 2π hc/λk B T ) dλ λ 6 λk B T (e 2π hc/λk B T ) 5 2 e 2π hc/λk B T =0, x = 2π hc λk B T x 5=0 e x x

4 Stefan-Boltzmann law I T I = σt 4, σ = k 4 B 60π h 3 c 2 =5.67 0 8 Wm 2 K 4. (.8) σ Stefan-Boltzmann constant I = s T (λ)dλ x =2π hc/(λk B T ) I = c 4 8π (k B T )4 (2π hc) 3 0 x 3 e x dx = kb 4 0 60π h 3 c 2 T 4 I = σt 4 (.8) ( 0 x 3 ) π4 e x dx = 5..2 P.E.A. Lenard 905 ν hν h photon

.. 5 E E = hν (.9) hν.3 hν φ 2 mv2 = hν φ (.0).3: φ ev electron volt, φ work function ev ev =.6029 0 9 J. (.) R.A. Millikan.4 M M M e V [ V ] 3.0 2.5 2.0.5.0 V.4: 0.5 0.0 0 2 4 6 8 0 2 ν [ 0 4 s - ].5: Na M M V (.0) 2 mv2 = hν φ V 0 V V = hν φ. (.2) ν V

6 V =0 ν 0 φ φ = hν 0. (.3).5 ν V V =0 ν 0 =4.39 0 4 s φ =.8 ev.5 h h..3 A.H. Compton 99 923 X Compton scattering momentum, momenta E = hν, p = hν c. (.4) X E + mc 2 = E + E e p +0 = p + p e. (.5) E p E p E e p e mc 2 E 2 e = (E E + mc 2 ) 2 = c 2 p 2 + c 2 p 2 2c 2 pp +2mc 3 (p p )+m 2 c 4 p 2 e = (p p ) 2 = p 2 + p 2 2pp cos θ (.4) θ Ee 2 = c 2 pe 2 + m 2 c 4 Δλ = λ λ = h ( cos θ ) (.6) mc λ = h/p λ = h/p h mc = 2.43 0 2 m (.7) (.6) θ Δλ X

.2. 7.2.2. A.J. Angstrom 884 J.J. Balmer λ n = 364.56 n 2 n 2 4 nm ( n =3, 4, 5, 6 ) (.8) λ λ λ 2 λ 3 /λ /λ 2 /λ 3 C. Runge J.R. Rydberg λ mn = λ n R m 2 ( m = n +,n+2, ) (.9) n λ n n R W. Ritz m A m λ mn = A m A n. (.20) combination principle.6 λ n = R H n 2 ( n =, 2, 3, ) (.2) λ n R H Rydberg constant R H =.097 0 5 cm λ

8 0 2 /λ [ 0 4 cm - ] 4 6 8 0 2.6: ( = R λ H n n 2 ) n =, 2, 3, n 2 (.22) n = n +,n +2,n +3,.2.2 909 E. Rutherford H. Geiger E. Marsden 0 4 93 N. Bohr () stationary state

.2. 9 (2) transition E = hν +e e m r v F = ma = mv2 r = e 2 4πε 0 r 2 (.23) e 2 /(4πε 0 r) e2 E = 2 mv2 e2 4πε 0 r = 8πε 0 r (.24) (.23) (.2) n n = n =2 n = n i n = n f n i >n f E = hc ( λ = E i E f = e2 ). (.25) 8πε 0 r f r i n 2 (.22) n r n = a B n 2 ( n =, 2, 3, ) (.26) a B n = Bohr radius E n = e 2 8πε 0 a B n 2 ( n =, 2, 3, ) (.27) (.2) a B = e 2 8πε 0 hcr H (.28)

0 R H a B +e +Q λ = me2 Q 2 ( 8ε0 2 ) ch3 ni 2 (.29) +e Q =+2e n f =4 n i =5, 6, 7, n i =6, 8, 0, +e e Q =+2e He + (.25) n 2 f hν nm = E n E m (.30) E n E m r n v n (.23) v n = 4πε 0 e 2 mr n T n =2πr n /v n ν n = = v n = e 2 T n 2πr n 2π 4πε 0 mab 3 n 3. (.3) (.25) r f = r n = a B n 2 r i = r m = r n+l l n ν n = E n+l E n e 2 [ ] = h 8πε 0 ha B n 2 e 2 (n + l) 2 4πε 0 ha B n 3 (.32) (.3) /n 3 n correspondence principle (.32) (.3) e 2 = e 2 4πε 0 ha B 2π 4πε 0 mab 3

.2. a B = ε 0 h2 πme 2 = 4πε 0 h 2 me 2 = 0.529 0 0 m, (.33) e 2 ( ) 2 me 4 E = = 8πε 0 a B 4πε 0 2 h 2 = 2.795 0 8 J = 3.606 ev (.34) n r n = a B n 2 (.35) e v n = 2 4πε 0 ma B n = h (.36) ma B n r n p n = n h (.37) p n = mv n angular momentum 2π h (.37) (.37) Bohr s quantum condition.2.3 924 L. de Broglie E = hν E = mc 2 p λ = h p (.38)

2 λ E = cp E = hν E = cp = hν = hc λ (.38) E = cp hν 0 m 0 ν 0 hν 0 = m 0 c 2. (.39) f 0 sin 2πν 0 t 0 t 0 v t 0 t ( t 0 = t vx ) (v/c) 2 c 2. [ ( 2πν f(x, t) sin 0 (v/c) 2 ν = (.40) ν 0 (v/c) 2, λ = u ν = c2 v t vx c 2 ) ] [ ( = sin 2πν t x )] u u = c2 v (v/c) 2 hν hν = (.40) (.4) ν 0 (.42) hν 0 = m 0 c 2 = (v/c) 2 (v/c) 2 mc2 (.43) E = mc 2 λ = hc2 (v/c) 2 = hc2 v hν 0 v mc 2 = h mv = h p (.44) v u = c 2 /v v<c u>c v u

.2. 3.7.7: x x ( ) f (x, t) = a sin(kx ωt), f 2 (x, t) = a sin (k + Δk)x (ω + Δω)t. u = ω k, u 2 = ω + Δω k + Δk phase velocity Δω ω Δk k f(x, t) = f (x, t)+f 2 (x, t) = [( 2a sin k + Δk ) x 2 ( ω + Δω 2 ) ] ( Δk t cos 2 x Δω ) 2 t (.45) t = t.8 t = t.8: ( Δk A(x, t ) = 2a cos 2 x Δω ) 2 t Δk/2 A(x, t ) [( f(x, t ) = A(x, t ) sin k + Δk ) ( x ω + Δω ) ] t 2 2

4 k + Δk/2 A(x, t ) t x v g = Δω Δk, (.46) group velocity = ω k, dω = dk (.47) ω = 2πν = 2πν 0 (v/c) 2, ω = 2π λ = 2πν 0 v/c c (v/c) 2 (.48) ω k = 2πν 0 (v/c) 2 c (v/c) 2 2πν 0 v/c = c2 v (.4) β = v/c dω dβ = 2πν 0 β ( β 2 ) 3/2, dk dβ = 2πν 0 c ( β 2 ) 3/2 v g = dω/dβ dk/dβ = βc = v. (.49) v