1234 Vol. 25 No. 8, pp , 2007 CPS SLAM Study on CPS SLAM 3D Laser Measurement System for Large Scale Architectures Ryo Kurazume,Yukihiro Toba

Similar documents
untitled

28 Horizontal angle correction using straight line detection in an equirectangular image

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

proc.dvi

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

14 2 5

tenpyou.final.dvi

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

proc-JRSJ.dvi

光学

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

8.dvi

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

proc.dvi

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

光学

「hoge」

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit


特別寄稿.indd

( ), ( ) Patrol Mobile Robot To Greet Passing People Takemi KIMURA(Univ. of Tsukuba), and Akihisa OHYA(Univ. of Tsukuba) Abstract This research aims a

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

,,.,.,,.,.,.,.,,.,..,,,, i

miru02_merging.dvi

特-3.indd

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

T05_Nd-Fe-B磁石.indd

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

IPSJ SIG Technical Report Vol.2012-ICS-167 No /3/ ,,., 3, 3., 3, 3. Automatic 3D Map Generation by Using a Small Unmanned Vehicle

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

soturon.dvi

Human-Agent Interaction Simposium A Heterogeneous Robot System U

橡上野先生訂正2

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L


日立金属技報 Vol.34

SICE東北支部研究集会資料(2012年)


Journal of Textile Engineering, Vol.53, No.5, pp

24 Depth scaling of binocular stereopsis by observer s own movements

0801391,繊維学会ファイバ12月号/報文-01-西川

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

S-6.indd

yasi10.dvi

Sobel Canny i

Worm Hole View 2 ( ) ( ) Evaluation of a Presentation Method of Multilevel Urban Structures using Panorama Views Yohei Abe, Ismail Arai and Nobuhiko N

JFE.dvi

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

900 GPS GPS DGPS Differential GPS RTK-GPS Real Time Kinematic GPS 2) DGPS RTK-GPS GPS GPS Wi-Fi 3) RFID 4) M-CubITS 5) Wi-Fi PSP PlayStation Portable

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(bundle adjustment) 8),9) ),6),7) GPS 8),9) GPS GPS 8) GPS GPS GPS GPS Anai 9) GPS GPS GPS GPS GPS GPS GPS Maier ) GPS GPS Anai 9) GPS GPS M GPS M inf

SICE東北支部研究集会資料(2004年)

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S

[6] DoN DoN DDoN(Donuts DoN) DoN 4(2) DoN DDoN 3.2 RDoN(Ring DoN) 4(1) DoN 4(3) DoN RDoN 2 DoN 2.2 DoN PCA DoN DoN 2 DoN PCA 0 DoN 3. DoN

06_学術_関節単純X線画像における_1c_梅木様.indd

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

Fig Measurement data combination. 2 Fig. 2. Ray vector. Fig (12) 1 2 R 1 r t 1 3 p 1,i i 2 3 Fig.2 R 2 t 2 p 2,i [u, v] T (1)(2) r R 1 R 2

2 ( ) i

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

2. 研 究 の 目 的 DM Digital Mapping LIDAR Light Detection and Ranging LIDAR Mobile Mapping System MMSMMS 3 CityGML Gröger et al., 2008 LOD2 MMS MMS 2005 M

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

kut-paper-template.dvi

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

21 Effects of background stimuli by changing speed color matching color stimulus

310 T. SICE Vol.51 No.5 May 2015 Konolige 7) Correlationbased Markov Localization Olson 8) Konolige Dellaert 9) Monte Carlo Localization (MCL) 10) 2 2


main.dvi

Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou

1 1 tf-idf tf-idf i

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-186 No /3/15 EMD 1,a) SIFT. SIFT Bag-of-keypoints. SIFT SIFT.. Earth Mover s Distance

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

25 D Effects of viewpoints of head mounted wearable 3D display on human task performance

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Transcription:

1234 Vol. 25 No. 8, pp.1234 1242, 2007 CPS SLAM Study on CPS SLAM 3D Laser Measurement System for Large Scale Architectures Ryo Kurazume,Yukihiro Tobata,KoujiMurakami and Tsutomu Hasegawa In order to construct three-dimensional shape models of large-scale architectural structures using a laser range finder, a number of range images are normally taken from various viewpoints, and these images are aligned using post-processing procedures such as the ICP algorithm. However, in general, before applying the ICP algorithm, these range images must be registered to roughly correct positions by a human operator in order to converge to precise positions. In addition, range images must be made to sufficiently overlap each other by taking dense images from close viewpoints. On the other hand, if the positions of the laser range finder at viewpoints can be identified precisely, local range images can be directly converted to the global coordinate system through a simple transformation calculation. The present paper proposes a new measurement system for large-scale architectural structures using a group of multiple robots and an on-board laser range finder. Each measurement position is identified by a highly precise positioning technique called Cooperative Positioning System (CPS), which utilizes the characteristics of the multiple-robot system. The proposed system can construct 3D shapes of large-scale architectural structures without any post-processing procedure such as the ICP algorithm or dense range measurements. Measurement experiments in unknown and large indoor/outdoor environments are successfully carried out using the newly developed measurement system consisting of three mobile robots named CPS-V. Key Words: SLAM, 3D Map, Multiple Robots, Laser Range Finder, Digital Archive 1. SLAM Simultaneous Localization And Mapping [13] [15] SLAM SLAM 2 1 2 1 SLAM 2007 4 5 Kyushu University 2 [1] [2] 1 ICP [4] [5] ICP JRSJ Vol. 25 No. 8 90 Nov., 2007

CPS SLAM 1235 ICP SLAM ICP GPS [6] [7] GPS RTK VRS GPS Cooperative Positioning System CPS [8] CPS CPS SLAM SLAM ICP 2. 1 2 3 GPS 1 2 SLAM 3 2 CPS [8] CPS 2. 1 CPS A B A B A B A B CPS Fig. 1 1 2 1 1 2 2 1 1 3 2 2 4 1 2 CPS 10 [m] Fig. 2 3 323.9 [m] Fig. 1 Cooperative Positioning System, CPS 25 8 91 2007 11

1236 Fig. 2 Long distance measurement experiment (dr dφ dψ) T, d i = ( x 0 x i) 2 +(ỹ 0 ỹ i) 2 L = r 1 cos ψ 1 d 1 r 2 cos ψ 2 d 2 z 1 r 1 sin ψ 1 z 0 z 2 r 2 sin ψ 2 z 0 φ 1 + θ 0 tan 1 ỹ 1 ỹ 0 x 1 x 0 φ 2 + θ 0 tan 1 ỹ 2 ỹ 0 x 2 x 0 8 A R 6 4, K 1 R 6 8, K 2 R 6 3 L 0 7 Σ L = K 1ΣK T 1 + K 2Σ ΘK T 2 9 Fig. 3 Results of long distance measurement experiment Σ 1 2 1 2 ( ) Σ11 Σ 12 Σ = 10 Σ 21 Σ 22 0.97 [m] 0.3% [9] 2. 2 CPS CPS Fig. 1 3 CPS 2 1 2 0 Fig. 1 (4) 0 2 P i(x i,y i,z i,θ i) (i =0 2) 0 1 2 r 1 r 2 φ 1 φ 2 ψ 1 ψ 2 0 1 2 (x 0 x 1) 2 +(y 0 y 1) 2 = r 2 1 cos 2 ψ 1 1 (x 0 x 2) 2 +(y 0 y 2) 2 = r 2 2 cos 2 ψ 2 2 z 0 = z 1 r 1 sin ψ 1 3 = z 2 r 2 sin ψ 2 4 θ 0 = φ 1 +tan 1 y 1 y 0 x 1 x 0 5 = φ 2 +tan 1 y 2 y 0 6 x 2 x 0 0 (x 0,y 0,z 0,θ 0) x i = x i + dx i Taylor Σ Θ Σ Θ = diag(σ 2 r σ 2 φ σ 2 ψ) 11 σr σ 2 φ σ 2 ψ 2 X 1,2 Θ 7 X 0 A X 0 Σ 1 L V = L AX 0 12 min V T Σ 1 L V 13 X 0 13 9 12 X 0 0 X 0 X 0 =(A T Σ 1 L A) 1 A T Σ 1 L L = BL 14 0 14 Σ 0 = BΣ LB T =(A T Σ 1 L A) 1 15 0 1 0 2 AX 0 = L + K 1X 1,2 + K 2Θ 7 (Σ 01, Σ 02) =BK 1Σ 16 X 0 =(dx 0 dy 0 dz 0 dθ 0) T, X 1,2 = (dx 1 dy 1 dz 1 dθ 1 dx 2 dy 2 dz 2 dθ 2) T, Θ = i JRSJ Vol. 25 No. 8 92 Nov., 2007

CPS SLAM 1237 Fig. 1 (2) (3) x i = x 0 + r i cos φ i cos ψ i y i = y 0 + r i sin φ i cos ψ i z i = z 0 + r i sin ψ i 17 18 19 x i = x i + dx i Taylor X i = L i + X 0 + K 2,iΘ 20 X i =(dx i dy i dz i dθ i) T Fig. 4 CPS SLAM with activetouchrobot L i = x 0 + r i cos φ i cos ψ i x i ỹ 0 + r i sin φ i cos ψ i ỹ i z 0 + r i sin ψ i z i 21 i X i = L i Σ ii = Σ 0 + K 2,iΣ Θi K T 2,i Σ 0i = Σ ij = Σ 0 22 23 24 i P i 14 22 X i P i P i + X i CPS 15 16 σ r =3[mm] σ φ =5[s] σ ψ =5[s] 10 [m] 100 1[km] Σ 0 σx 2 + σy 2 =0.0203 [m 2 ] [12] 3. 3. 1 CPS SLAM CPS SLAM SLAM Simultaneous Localization And Mapping [13] [15] CPS SLAM Fig. 5 Obtained floor map CPS SLAM [10] Fig. 4 CPS Fig. 5 CPS SLAM CPS SLAM CPS ICP CPS CPS-V CPS-V 3. 2 5 CPS CPS-V Fig. 6 5 CPS CPS-V 1 P-cle Parent mobile unit Fig. 7 2 HPI Japan Fig. 8 LMS 200 Sick AP-L1 TOPCON Ltd. Table 1 25 8 93 2007 11

1238 Fig. 6 Fifth CPS machine model, CPS-V Fig. 9 Indoor experiment using CPS-V Fig. 7 3D laser measurement system using rotation table around yaw axis Fig. 8 Child robot Table 1 Specification of total station, AP-L1 AP-L1 (TOPCON Ltd.) Range 4 400[m] Resolution (distance) 0.2[mm] Resolution (angle) 5 Precision (distance) 3 2ppm[mm] Precision (angle) 5 Table 2 Specification of laser range finder, LMS200 LMS 200 (SICK Corp.) Range 80[m] Field of view 180 Resolution (distance) 10[mm] Resolution (angle) 0.5 2 MD900-TS Applied Geomechanics Inc. 80 [m] 180 Table 2 Fig. 10 Path of parent robot yaw Fig. 7 1 37.8 CPS 3. 3 5 CPS CPS-V 1 4[m] Fig. 9 JRSJ Vol. 25 No. 8 94 Nov., 2007

CPS SLAM 1239 (a1) (a) (a2) Fig. 11 Obtained 3D map of indoor environment Fig. 10 x 39 [m] y 10 [m] 2 Fig. 11 12 23 Fig. 12 (a2) (b2) Fig. 12 (c2) CPS ICP CPS 86.21 [m] 1.25 [m] 1.45% yaw 4.2 2.1 CPS [9] Fig. 10 Corner 1 23 Fig. 13 (a) 1.17 [m] 1 2 CPS 1 Table 1 5[m] [12] 4[m] 2 22 CPS CPS CPS CPS (b1) (b2) (b) (c1) (c2) (c) Fig. 12 Obtained 3D map of indoor environment CPS [8] Fig. 14 22 5 CPS 93.9 [m] 0.22 [m] 0.24% yaw 1.5 Fig. 14 Corner Fig. 13 (b) 0.22 [m] Fig. 13 (a) 3. 4 13 25 8 95 2007 11

1240 (a) Child robot moves 22 times (b) Child robot moves 5 times Fig. 13 Comparison of modeling errors Fig. 15 Total view of 3D map in outdoor environment (a1) (a) (a2) (b1) (b) (b2) Fig. 14 Path of parent robot (each child robot moves 5 times) Fig. 15 16 Fig. 17 147.7 [m] 0.63 [m] 0.43% yaw 0.9 ICP 3. 5 3[m] Fig. 18 Fig. 19 Fig. 20 2 (c1) (c2) (c) Fig. 16 3D map of buildings in outdoor environment 130.6 [m] 0.80 [m] 0.61% yaw 0.7 4. JRSJ Vol. 25 No. 8 96 Nov., 2007

CPS SLAM 1241 Fig. 17 Path of parent robot Fig. 19 3D map of outdoor environment with slopes Fig. 18 Outdoor environment with slopes CPS CPS SLAM CPS CPS-V CPS ICP CPS ICP Fig. 20 Path of parent robot ICP B 18360124 5 RT 19360119 25 8 97 2007 11

1242 [ 1] K. Ikeuchi, K. Hasegawa, A. Nakazawa, J. Takamatsu, T. Oishi and T.Masuda: Bayon Digital Archival Project, Proceedings of the Tenth International Conference on Virtual System and Multimedia, pp.334 343, 2004. [2] VR http://biz.toppan.co.jp/ vr/ [3] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade and D. Fulk: The Digital Michelangelo Project: 3D Scanning of Large Statues, Proceedings of ACM SIGGRAPH 2000, pp.131 144, 2000. [4] P.J. Besl and N.D. McKay: A method for registration of 3- Dshapes, IEEE Trans. Pattern Anal. Machine Intell., vol.14, no.2, pp.239 256, 1992. [5] Y.Chen and G. Medioni: Object modelling by registration of multiple range images, Image and Vision Computing, vol.10, no.3, pp.145 155, 1992. [6] H. Zhao and R. Shibasaki: Reconstructing a textured CAD model of an urban environment using vehicle-borne lase range scanners and line cameras, Machine Vision and Applications, vol.14, pp.35 41, 2003. [7] K.Ohno, T. Tsubouchi and S. Yuta: Outdoor Map Building Based on Odometory and RTK-GPS Positioning Fusion, Proc. IEEE International Conference on Robotics and Automation, pp.684 690, 2004. [8] vol.13, no.6, pp.838 845, 1995 [9] 8 CPS-III 16 pp.169 170, 1998. [10] CPS vol.17, no.1, pp.84 90, 1999. [11] CPS SLAM CPS- V SLAM 24 2N17, 2006. [12] CPS-II vol.15, no.5, pp.773 780, 1997. [13] A. Nuchter and H. Surmann: 6D SLAM with an Application in Autonomous Mine Mapping, Proc. IEEE International Conference on Robotics and Automation, pp.1998 2003, 2004. [14] J. Weingarten and R. Siegwart: EKF-based 3D SLAM for Structured Environment Reconstruction, Proc. IEEE/RSJ International Conference on Intelligent Robots and System, pp.2089 2094, 2005. [15] D.M. Cole and P.M. Newman: Using Laser Range Data for 3D SLAM in Outoor Environment, Proc. IEEE International Conference on Robotics and Automation, pp.1556 1563, 2006. Ryo Kurazume 1967 2 4 1991 1995 2000 2002 2007 Kouji Murakami 1975 4 25 2004 Yukihiro Tobata 1981 10 26 2005 CPS SLAM Tsutomu Hasegawa 1950 2 18 1973 1992 JRSJ Vol. 25 No. 8 98 Nov., 2007