X線分析の進歩36 別刷

Similar documents
% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

000..\..

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A


untitled

X線分析の進歩45

,, X Handy Type X Ray Fluorescence Element Analyzer Jun Kawai Department of Materials Science and Engineering, Kyoto University Handy X r

JAJP

03J_sources.key

元素分析

X線分析の進歩 39 別刷

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

製紙用填料及び顔料の熱分解挙動.PDF

36 th IChO : - 3 ( ) , G O O D L U C K final 1

日本電子News vol.44, 2012

H1-H4

特-7.indd

X線分析の進歩38別刷


磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

untitled

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

資源と素材

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COO

RAA-05(201604)MRA対応製品ver6


PowerPoint プレゼンテーション

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合


1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

01-表紙.ai

2_R_新技術説明会(佐々木)

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

陽電子科学 第4号 (2015) 3-8

„´™Ÿ/’£flö

untitled

untitled

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

B

RN201602_cs5_0122.indd

X線分析の進歩38 別刷

The Number of Samples Life-science total Other fields total Development total


Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

抄録/抄録1    (1)V

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

取扱説明書 [F-06E]

研修コーナー

パーキンソン病治療ガイドライン2002

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

渡辺(2309)_渡辺(2309)

hv (%) (nm) 2

FERRITES March 2014 Mn-Zn EPC

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

Agilent 7900 ICP-MS 1 1 Ed McCurdy 2 1 Agilent Technologies, Japan 2 Agilent Technologies, UK

S-5.indd

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

4 1 Ampère 4 2 Ampere 31

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

9 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.0,,/+,/0 (,**/) 251 * * E#ects of Microbial Transglutaminase on Melting Point and Gel property of G

untitled

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

<31315F985F95B62D899C8CA98E8182D982A92E696E6464>

J. Jpn. Inst. Light Met. 65(6): (2015)

原稿.indd

304 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.0, -*. -*3 (,**1) 58 * ** *** : * : ** *** Development of Sorting System Based on Potato Starch C

Agilent AA ICP ICP-MS ICP-MS AA 55B AA LCD AA PC PC 240 AA / / AA 240FS/280FS AA AA FS 240Z/280Z AA GFAA AA Duo 1 PC AA 2 280FS AA

untitled

IR0036_62-3.indb

橡H141(成人モニタリング12年まとめ)表紙・目次・

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

28 Horizontal angle correction using straight line detection in an equirectangular image

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

untitled

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

本文/目次(裏白)

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

original: 2011/11/5 revised: 2012/10/30, 2013/12/ : 2 V i V t2 V o V L V H V i V i V t1 V o V H V L V t1 V t2 1 Q 1 1 Q

untitled


*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

01-加藤 実-5.02

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

Y=0.0014X (r=0.9999, n=27) Fig. 1. Standard curve of oxalic acid (ox) Table 1. Recovery of Oxalic Acid Added to Green Tea (Maccha) *1 Number o

Doc. No. MA035A-RC-D02-1 Rev Hitz B52 1

07_学術.indd


Transcription:

X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group of X-Ray Analysis, The Japan Society for Analytical Chemistry

X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan Kyoto Prefectural Comprehensive Center for Small & Medium Enterprises 134, Chudoji-Minamimachi, Shimogyo-ku, Kyoto 600-8813, Japan (Received 4 November 2004, Revised 6 December 2004, Accepted 6 December 2004) X-ray fluorescence analysis on environmental standard reference materials has been performed by using a dry battery X-ray fluorescence (XRF) spectrometer with the combination of a pyroelectric X-ray generator and a potable Si PIN X-ray detector. This dry battery spectrometer detected K, Ca, Ti, Mn, Fe, Zn and Pb (~ hundred ppm order). Similar analysis with a commercial energy dispersion XRF spectrometer achieved the additional detection of Cu, Br and Rb. However, the limit of the detection was similar. This difference of detected elements is mainly due to the difference between characteristic X-rays from both X-ray sources and not due to the difference of intensities of excited X-rays. Thus, the dry battery XRF spectrometer has sufficient capability for XRF analysis on environmental materials as commercial spectrometers. [Key words] X-ray fluorescence analysis, Potable, Environmental samples, Standard reference materials, Dry battery X Si PIN X X 3 X 606-8501 134 600-8813 36 225 Adv. X-Ray. Chem. Anal., Japan 36, pp.225-234 (2005)

K, Ca, Ti, Mn, Fe, Zn, Pb Cu, Br Rb 100 ppm X X X 100 ppm X X 1. X X 1-4 X Amptek COOL- X X X Cd, Pb 5 Al Fe 6 Cr 7 8 9 X Si PIN Amptek XR-100CR X X EDX-700 2. 10 NIES No.1 pepperbush NIES No.2 pond sediment NIES No. 8 vehicle exaust particles 3 X 100 mg 200 mg X Amptek COOL-X Si PIN XR-100CR X COOL-X XR-100CR 5-9, 11 X 90 COOL-X XR-100CR 3 cm 33 mm 33 mm, 3.5 mm 2000 2 % 200 ev 226 36

X EDX-700 X Rh 50 kv, 1 ma, 50 W X 10 mmφ X Si(Li) 10 mm 2 6 µm 25 mm Na-U 50 kv, 100 µa 200 25 % 1 3. Fig.1 pepperbush X Fig.1a X Fig.1b X EDX-700 1000 a) Ca Kα Ta Lα Cu Kα Intensity (counts) 500 K Kα Mn Kα Mn Kβ Fe Kα Ca Kβ Ta Lβ Cu Kβ Ta Lγ Ar Kα 4000 0 0 2 4 Mn Kα 6 8 10 12 14 Ca Kα Energy (kev) b) Intensity (counts) 2000 K Kα Ar Kα Ca Kβ Mn Kβ Fe Kα Zn Kα Rh Lα Fe Kβ Cu Kα Zn Kβ Rb Kα 0 0 2 4 6 8 10 12 14 Energy (kev) Fig.1 a) XRF spectrum of pepperbush measured with the potable XRF spectrometer in combination of a dry battery X-ray generator and a Si PIN detector. b) XRF spectrum of pepperbush measured by using a commercial XRF spectrometer. 36 227

X LaTaO 3 Ta Lα, Lβ, Lγ 8~11 kev Be Cu Cu Kα 8 kev 8 kev X Ta Lα, Cu Kα 900 counts Ar 2.96 kev X Rh Kα 20.17 kev 19.12 kev 1400 counts, 3500 counts X X X 8 kev 4 kev 4 kev X 8 kev X 8 kev X Ca Kα X X 800 counts 4800 counts Zn, Mn, Co, Ni, Cd K 1.51 wt % Ca 1.38 wt% Mn 0.203 wt% Mg 0.408 wt% Fe 205 ppm Fe Kα 6.4 kev Mn Kβ 6.5 kev X Fe Kβ 7.06 kev X Fe Kβ 7.06 kev X Mn Kα 5.9 kev 6.4 kev Fe Kα, Mn Kβ Ca Kα Ca Kβ Ca Kα K Kβ Mn Kα 6.4 kev 6.4 kev Mn Kβ Fe Kα Zn 340 ppm Rb 75 ppm Cu 12 ppm X X Cu Kα X Zn Kα Cu Kα, Ta Lα Cu Kβ, Ta Lβ Zn Fig.1a X Rb Rh Kα Rb Kα X X Rb Co 23 ppm Ni 8.7 ppm Cd 6.7 ppm 228 36

X X X Fig.2 pond sediment X a b X X X Ta L 8~11 kev Cu Kα 8 kev 8 kev X Ta Lα, Cu Kα 700 counts X X Rh Kα 20.17 kev 19.12 kev 2100 counts, 2700 counts X Fe Kα X X 7000 counts 80000 counts Ar 2.96 kev 1500 a) Fe Kα Fe Kβ Intensity (counts) 1000 500 Ti Kα Mn Kα Ca Kα K Kα Ar Kα Ta Lα Cu Kα Ta Lβ Cu Kβ Ta Lγ 0 0 2 4 6 8 10 12 14 Fe Kα Energy (kev) b) Intensity (counts) 10000 5000 Fe Kβ Ti Kα K Kα Ca Kα Ar Kα Rh Lα Mn Kα Ti Kβ Cu Kα Zn Kα Pb Lα Fe Kα SUM Rb Kα 0 0 2 4 6 8 10 12 14 Energy (kev) Fig.2 XRF spectra of pond sediment measured with (a) the dry battery XRF spectrometer and (b) a commercial XRF spectrometer. 36 229

Fe 6.53 wt% K 0.68 wt % Ca 0.81 wt% Ti 0.64 wt% Mn 770 ppm Cu Kα, Zn Kα, Pb Lα 10.5 kev Rb Kα X Cu 210 ppm Zn 343 ppm Pb 105 ppm Lα Rh K Rh L 2.70 kev, 2.84 kev Pb Mα 2.35 kev M L X Pb Lα 10.5 kev Ta Lγ 10.9 kev Si 21 wt% Si Kα 1.74 ev Si Kα Al 10.6 wt % Al Kα Fig.3 X X 8 kev X 800 counts X Rh Kα 20.17 kev 19.12 kev 1700 counts, 4700 counts X Fe Kα X X 1200 counts 15000 counts Fe Zn 0.101 wt% Ca 0.53 % Ti, S K 0.115 wt% Zn X Zn Kα Pb 219 ppm Mn Kα Cu Kα 67 ppm Br Kα 56 ppm X Mn Kα X Br Kα 11.9 kev Pb Lα 10.6 kev Pb Lβ 12.6 kev X Pb Pb Mα 2.35 kev S Kα 2.31 kev 200 ev X X Pb Lα,β Pb S Fig.2 Pb Lα Pb Mα 3 Pb Lα 2.3 kev 1/2 2.3 kev S Kα 230 36

1000 a) Fe Kα Ta Lα Cu Kα Intensity (counts) 500 Ca Kα Fe Kβ Ta Lβ Cu Kβ Zn Kα Ta Lγ Ar Kα S Kα Ca Kβ Ti Kα 0 15000 0 2 4 6 8 Fe Kα 10 12 14 Energy (kev) b) Intensity (counts) 10000 5000 Ca Kα Fe Kβ Zn Kα S Kα Ar Kα Ca Kβ Rh Lα Mn Kα Ti Kα Zn Kβ Cu Kα Pb Lα Pb Lβ As KαBr Kα 0 0 2 4 6 8 10 12 14 Energy (kev) Fig.3 XRF spectra of vehicle exhaust particles measured with (a) the dry battery XRF spectrometer and (b) a commercial XRF spectrometer. S Pb L Pb Lα,β Pb Lβ 1:1.1 Pb Lα Pb Lα As Kα 10.5 kev X S X Zn Pb Lα, β Table 1~3 X He * X X 36 231

Table 1 Summary of dry battery and commercial XRF measurements for pepperbush and the abundance of elements. Elements Dry Battery XRF Commercial XRF (air) XRF Measurements (He) Certified Values (ref. 10) K 1.51 (wt%) 1.38 (wt%) Ca 1.0 (wt%) 1.51 (wt%) Mn 0.25 (wt%) 0.2 (wt%) S 0.075 (wt%) Si 390 (ppm) Fe 310 (ppm) 205 (ppm) Zn 320 (ppm) 340 (ppm) Cu 110 (ppm) 12 (ppm) Rb 44 (ppm) 75 (ppm) Sr 31 (ppm) 36 (ppm) Table 2 Summary of dry battery and commercial XRF measurements for pond sediment and the abundance of elements. Elements Dry Battery XRF Commercial XRF (air) XRF Measurements (He) Certified Values (ref. 10) (*Reference Values) Si 6.0 (wt%) 21* (wt%) Fe 6.6 (wt%) 6.5 (wt%) Al 3.7 (wt%) 10.3 (wt%) Ca 0.84 (wt%) 0.81 (wt%) K 0.66 (wt%) 0.68 (wt%) Ti 0.59 (wt%) 0.64*(wt%) S 0.3 (wt%) Mn 980 (ppm) 770* (ppm) V 500 (ppm) 250* (ppm) Zn 470 (ppm) 343 (ppm) Sc 250 (ppm) 28* (ppm) Cu 210 (ppm) Pb 105 (ppm) Zr 90 (ppm) Rb 45* (ppm) X X X Rb, Br X X 232 36

Table 3 Summary of dry battery and commercial XRF measurements for vehicle exhaust particles and the abundance of elements. Elements Dry Battery XRF Commercial XRF (air) XRF Measurements (He) Certified Values (ref. 10) (*Reference Values) S 0.60 (wt%) Ca 0.52 (wt%) 0.53 (wt%) Fe 0.51 (wt%) Si 0.18 (wt%) Zn 0.15 (wt%) 0.104 (wt%) K 0.10 (wt%) 0.115 (wt%) P 340 (ppm) 510* (ppm) Ti 420 (ppm) Al 380 (ppm) 3300 (ppm) Sc 220 (ppm) 0.55* (ppm) Pb 250 (ppm) 219 (ppm) Cu 150 (ppm) 67 (ppm) Mn 130 (ppm) Sr 95 (ppm) 89 (ppm) Br 110 (ppm) 56* (ppm) As X Fig.3 Rb Kα, Br Kα Ti Kα Ti Kα X X X X X X 6.7 ppm Cd Cd Cd Lα 3.1 kev Rh L X X 5 Zr Zr Cd K X 36 233

4. X Si PIN X X 3 X X K, Ca, Ti, Mn, Fe, Zn, Pb X Cu, Br, Rb 100 ppm X X X 100 ppm X (15750064) 1 M. Terasawa: J. Phys. Soc. Jpn., 25, 1199 (1968). 2,, : X 29, 203 (1998). 3 J. D. Brownridge: Nature, 352, 287 (1992). 4 J. D. Brownridge, S. Raboy: J. Appl. Phys., 86, 640 (1999). 5,, : (Bunseki Kagaku), 53, 183 (2004). 6, : X 35, 81 (2004). 7 H. Ida, J. Kawai: Anal. Bioanal. Chem., 379, 735 (2004). 8, : (Bunseki Kagaku), 53, 753 (2004). 9 H. Ida, J. Kawai: Anal. Sci., 20, 1211 (2004). 10 http://web3.nies.go.jp/labo/crm/ 2004 11. 11 H. Ida, J. Kawai: X-ray Spectrom., in press (2005). 234 36