CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

Similar documents
可約概均質ベクトル空間の$b$-関数と一般Verma加群

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t


2010 ( )

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

1

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

untitled

2301/1     目次・広告

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta

untitled

Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(2n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kas

1 P2 P P3P4 P5P8 P9P10 P11 P12

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

数理解析研究所講究録 第1908巻

untitled

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

untitled

所報

プリズムh1-07

untitled

CONTENTS Vol.65 No.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

CONTENTS Vol.63 No.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~



Vol.33 CONTENTS

untitled

日本消防3月H1-4.三校.indd

CONTENTS Vol.67 No.12

01.indd

Centralizers of Cantor minimal systems

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似)

0302TH0130.indd

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{


会報73-P1表1・表4

Contents P.2 P.13 P.9P.11 P.12 P.15P.17P.18 P.3P.7P.4P.5P.6


MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

Contents

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α

Twist knot orbifold Chern-Simons

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( )+V (r 1, r 2 ) ϕ(r 1, r 2

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes complex structure 2 Hopf h p : S 2p+1 CP p, h

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

P24-25.eps

Title 絶対温度 <0となり得る点渦系の平衡分布の特性 ( オイラー方程式の数理 : 渦運動 150 年 ) Author(s) 八柳, 祐一 Citation 数理解析研究所講究録 (2009), 1642: Issue Date URL

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

数理解析研究所講究録 第1977巻

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)


Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

文庫●注文一覧表2016c(7月)/岩波文庫


PowerPoint プレゼンテーション

Bruhat

198 Column / /30 Column / /30 12/1-4/30 Coupon

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

.L.....C1205.qxd

.L.....C1105.qxd

Contents

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

aisatu.pdf

Sigma

Sigma

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

News‘oŠÍ

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

bunbora_fix_0106_修正_6_

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi

.L.....C1208.qxd

.L.....C1109.qxd

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

.L.....C1302.qxd

GM-01A_usermanual

1. 52

扉 序文 目次DVD用 .indd

すぐできる冬の省エネ・節電ガイド

Transcription:

1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) ( 1999 3 ) 2002 ( ) 10 2002 Capelli ($\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\dot{\mathrm{a}}\mathrm{c}\mathrm{a}\mathrm{l}$ groups)

2 1: Capelli $\mathfrak{g}$ Lie $U(\mathfrak{g})$ (A) (B) (C) ( ) ( ) Capelli (A) (C) (B) (A) (B) (C) (1) $-(3)$ (1) \searrow (2) (3) Capelli - [1] [3] [1] ( ) : ( ) $-$ ( ) U( ) ( ) ( fusion process) Harish-Chandra Schur unique (Gelfand ) [2] ( = ): (1) fusion process Capelli (l) :

3 - ( ) [3] ( ) : Capelli $\rho$-shift Okounkov higher Capelli Young contents Howe-Umeda Appendix anisotropic Lie ( ) Lie $\rho-$ -shift $R$- Itoh-Umeda Lie \epsilon 2 dual $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}$ 2: Capelli $U(\mathfrak{g}\mathfrak{l}_{n})$ Capelli Howe-Umeda CapeUi Capelli $U(\mathfrak{g}\mathfrak{l}_{n})$ $GL_{n}$ ( 1 ) $(\pi V_{\pi})$ $GL_{n}$ $\pi_{\mu\nu}(g)\#\mathrm{h}g$ $g_{ij}$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ : $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(m\cross n))$ $t_{ij}$ $\frac{\partial}{\partial t_{1\mathrm{j}}}$ $\mathfrak{g}\mathfrak{l}_{n}$ Lie ( )

$\mathfrak{g}\mathfrak{l}_{m}$ 4 ( ) $\rho(e_{ij})=\sum_{a=1}^{m}t_{ai}\partial_{aj}$ $\lambda(e_{ij}^{\mathrm{o}})=\sum_{b=1}^{n}t_{jb}\partial_{ib}$ Lie $T=(t_{ij})_{1\leq i\leq m1\leq j\leq n}$ $D=(\partial_{ij})_{1\leq i\leq m1\leq j\leq n}$ $\Pi=(\rho(E_{ij}))_{1\leq ij\leq n}$ $\Pi^{0}=(\lambda(\mathrm{E}_{ij}^{\mathrm{o}}))_{1\leq ij\leq m}$ $\Pi={}^{t}TD$ $t_{\pi^{\mathrm{o}}=t{}^{t}d}$ $t$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ $\pi$ $\mathrm{r}(\pi(^{t}t)\pi(d))=\sum_{\mu\nu}\pi_{\nu\mu}(^{t}t)\pi_{\mu\nu}(d)$ $GL_{n}$ $\Pi={}^{t}TD$ $\pi$ ( ) $\pi$ $U(\mathfrak{g}\mathfrak{l}_{n})$ $C_{\pi}= \mathrm{h}(\pi^{\mathfrak{y}}(\mathrm{e}))=\sum_{\mu}\pi_{\mu\mu}^{\mathfrak{h}}(\mathrm{e})$ $\pi\#$ $C_{\pi}$ $\pi_{\mu\mu}^{\mathfrak{h}}$ \urcorner \beta A Okounkov (1996) [HU] higher order Capelli $C_{\pi}$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ $\pi$ Capelli ( multiplicity-foee

5 action ) $C_{\pi}$ $\pi$ ( $P(\mathrm{M}\mathrm{a}\mathrm{t}(n))$ (Lie ) (?) vanishing property Capelli ) 3: Capelli (column determinant) $\det(\phi)=\sum_{\sigma\in \mathfrak{s}_{n}}$ sign(a) $\Phi_{\sigma(1)1}\Phi_{\sigma(2)2}\cdots\Phi_{\sigma(n)n}$ (row determinant) Capelli ( highest weight ) Capelli (double deterninant; symmetrized determinant) (permanent) (Pfaffian) (Hafnian) Lie Lie Lie j(n

$\mathfrak{g}$ 6 ( ) $U(\mathfrak{g})$ Lie $\mathfrak{g}$ $=\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}$ ( typical invariant) U( ) $\mathfrak{g}$ Okounkov (?) Capelli $(\mathrm{a})-(\mathrm{c})$ 1 Lie $\mathfrak{g}\mathfrak{l}_{n}$ multiplicity-free action Capelli split Lie dual pair Capelli Wronski $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{n}$

$\mathfrak{g}$ 7 Lie anisotropic $R$ ( ) 4: Lie (B) Harish-Chandra ZU $(\mathfrak{g})\simeq U(\mathfrak{h})^{W}=S(\mathfrak{h})^{W}$ h Cartan W Weyl $\mathfrak{h}$ $\mathfrak{s}_{n}$ Weyl $\{\pm 1\}^{n}$ $\{\pm 1\}^{n-1}$ $S(\mathfrak{h})^{W}$ modify Schur Schur-Weyl duality Weyl Han $\mathrm{s}\mathrm{h}$-chandra ( ) (Schur ) as $\text{ }$ $\Sigma \mathrm{j}$ Hanish-Chandra IEI ZU $(\mathfrak{g})arrow S(\mathfrak{h})^{W}$

8 $(\mathfrak{g})$ (1) ZU (2) Harish-Chandra (1) (2) Hari $\mathrm{s}\mathrm{h}$-chandra Harish-Chandra Hari $\mathrm{s}\mathrm{h}$-chandra 5: $\mathfrak{g}\mathrm{t}_{n}$ $\mathfrak{g}\mathfrak{l}_{n}$ ( ) 2 1 ( Lie ) ( ;Lie ) $GL$ ( ) oscillator spin dual pair ( ) \sim [2 Lie $0_{n}$ s[2

$i$ 9 - fcapelli Lie Howe-Umeda multiplicity-free actions Capelli 6: (1) [Capelli ] Capelli Capelli $-$ typical $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\bm{\mathrm{r}}\mathrm{t}\mathrm{s}$ - Capeui ( ) ( ) (doubling the variables) R Howe dual pair (dual) Capelli dual $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}$ dual \searrow Ge and ( ) Newton Koszul cyclic cohomology

10 (2) [ ] R Lie $\mathrm{a}\mathrm{d}\mathrm{j}(\dot{\mathrm{n}}\mathrm{n}\mathrm{t}$ Capelli pshift $\rho-$-shift - Capelli ( ) $\mathrm{a}\mathrm{d}\mathrm{j}\dot{\alpha}\mathrm{n}\mathrm{t}$ - Euler Lie Capelli [1] 100 Capelli Identity Identities a century after in Selected Papers on Harmonic Analysi $\mathrm{s}$ $46(1994)$ 206-227 ( : The Capelli Groups and Invariants (Ed by K Nomizu) AMS Translations Series 2 vol 183 (1998) pp 51-78 [2] R Howe and T Umeda The Capelli identity the double commutant theorem and multiplicity-free actions Math Ann 290 (1991) 565-619 3175 [3] T Umeda Newton s $fo$ rmula for $\mathfrak{g}\mathfrak{l}_{n}$ Proc Amer Math Soc 126 (1998) 3169- [4] T Umeda On the proofs of the Capdli identities preprint 1997 [5] T Umeda On TUmbull identity for $skew- s\psi nmet\dot{n}c$ matrices Proc Edinburgh Math Soc 43 (2000) 379-393 [6] T Umeda Application of Koszul complex to Wronski relations for $U(\mathfrak{g}\mathfrak{l}_{n})$ Commentanii Math Helv 78 (2003) 663-680 [7] M Itoh and T Umeda On central elements in the universal enveloping algebras of

11 the orthogonal Lie algebras Compositio Math 127(2001) 333-359 [8] Capelli No 429 (1999 3 ) 39-46 [2] M Noumi T Umeda and M Wakayama A quantum analogue fo the Capelli identity and an elementary differential calculus on $GL_{q}(n)$ Duke Math J 76(1994) 567-595 [3] M Noumi T Umeda and M Wakayama Dual pairs spherical harmonics and a Capelli identity in quantum group theory Compositio Math 104(1996) 227-277 [5] M Itoh: Capelli identities for the dual pair $(O_{M} Sp_{N})$ Math Zeit 246(2004) 125-154 [6] A Wachi: Central elements in the universal enveloping algebras for the split realization of the orthogonal Lie algebras to appear in Lett Math Phys