CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

Similar documents
可約概均質ベクトル空間の$b$-関数と一般Verma加群

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t


Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

2301/1     目次・広告

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta

1 P2 P P3P4 P5P8 P9P10 P11 P12

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

数理解析研究所講究録 第1908巻

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

untitled

プリズムh1-07

untitled

CONTENTS Vol.65 No.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~


日本消防3月H1-4.三校.indd

01.indd

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{


MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

P24-25.eps

数理解析研究所講究録 第1977巻

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌


$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

文庫●注文一覧表2016c(7月)/岩波文庫

PowerPoint プレゼンテーション

Bruhat

198 Column / /30 Column / /30 12/1-4/30 Coupon

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Sigma

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

.L.....C1208.qxd

.L.....C1109.qxd

.L.....C1302.qxd

GM-01A_usermanual

Transcription:

1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) ( 1999 3 ) 2002 ( ) 10 2002 Capelli ($\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\dot{\mathrm{a}}\mathrm{c}\mathrm{a}\mathrm{l}$ groups)

2 1: Capelli $\mathfrak{g}$ Lie $U(\mathfrak{g})$ (A) (B) (C) ( ) ( ) Capelli (A) (C) (B) (A) (B) (C) (1) $-(3)$ (1) \searrow (2) (3) Capelli - [1] [3] [1] ( ) : ( ) $-$ ( ) U( ) ( ) ( fusion process) Harish-Chandra Schur unique (Gelfand ) [2] ( = ): (1) fusion process Capelli (l) :

3 - ( ) [3] ( ) : Capelli $\rho$-shift Okounkov higher Capelli Young contents Howe-Umeda Appendix anisotropic Lie ( ) Lie $\rho-$ -shift $R$- Itoh-Umeda Lie \epsilon 2 dual $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}$ 2: Capelli $U(\mathfrak{g}\mathfrak{l}_{n})$ Capelli Howe-Umeda CapeUi Capelli $U(\mathfrak{g}\mathfrak{l}_{n})$ $GL_{n}$ ( 1 ) $(\pi V_{\pi})$ $GL_{n}$ $\pi_{\mu\nu}(g)\#\mathrm{h}g$ $g_{ij}$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ : $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(m\cross n))$ $t_{ij}$ $\frac{\partial}{\partial t_{1\mathrm{j}}}$ $\mathfrak{g}\mathfrak{l}_{n}$ Lie ( )

$\mathfrak{g}\mathfrak{l}_{m}$ 4 ( ) $\rho(e_{ij})=\sum_{a=1}^{m}t_{ai}\partial_{aj}$ $\lambda(e_{ij}^{\mathrm{o}})=\sum_{b=1}^{n}t_{jb}\partial_{ib}$ Lie $T=(t_{ij})_{1\leq i\leq m1\leq j\leq n}$ $D=(\partial_{ij})_{1\leq i\leq m1\leq j\leq n}$ $\Pi=(\rho(E_{ij}))_{1\leq ij\leq n}$ $\Pi^{0}=(\lambda(\mathrm{E}_{ij}^{\mathrm{o}}))_{1\leq ij\leq m}$ $\Pi={}^{t}TD$ $t_{\pi^{\mathrm{o}}=t{}^{t}d}$ $t$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ $\pi$ $\mathrm{r}(\pi(^{t}t)\pi(d))=\sum_{\mu\nu}\pi_{\nu\mu}(^{t}t)\pi_{\mu\nu}(d)$ $GL_{n}$ $\Pi={}^{t}TD$ $\pi$ ( ) $\pi$ $U(\mathfrak{g}\mathfrak{l}_{n})$ $C_{\pi}= \mathrm{h}(\pi^{\mathfrak{y}}(\mathrm{e}))=\sum_{\mu}\pi_{\mu\mu}^{\mathfrak{h}}(\mathrm{e})$ $\pi\#$ $C_{\pi}$ $\pi_{\mu\mu}^{\mathfrak{h}}$ \urcorner \beta A Okounkov (1996) [HU] higher order Capelli $C_{\pi}$ $\mathcal{p}(\mathrm{m}\mathrm{a}\mathrm{t}(n))$ $\pi$ Capelli ( multiplicity-foee

5 action ) $C_{\pi}$ $\pi$ ( $P(\mathrm{M}\mathrm{a}\mathrm{t}(n))$ (Lie ) (?) vanishing property Capelli ) 3: Capelli (column determinant) $\det(\phi)=\sum_{\sigma\in \mathfrak{s}_{n}}$ sign(a) $\Phi_{\sigma(1)1}\Phi_{\sigma(2)2}\cdots\Phi_{\sigma(n)n}$ (row determinant) Capelli ( highest weight ) Capelli (double deterninant; symmetrized determinant) (permanent) (Pfaffian) (Hafnian) Lie Lie Lie j(n

$\mathfrak{g}$ 6 ( ) $U(\mathfrak{g})$ Lie $\mathfrak{g}$ $=\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}$ ( typical invariant) U( ) $\mathfrak{g}$ Okounkov (?) Capelli $(\mathrm{a})-(\mathrm{c})$ 1 Lie $\mathfrak{g}\mathfrak{l}_{n}$ multiplicity-free action Capelli split Lie dual pair Capelli Wronski $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{n}$

$\mathfrak{g}$ 7 Lie anisotropic $R$ ( ) 4: Lie (B) Harish-Chandra ZU $(\mathfrak{g})\simeq U(\mathfrak{h})^{W}=S(\mathfrak{h})^{W}$ h Cartan W Weyl $\mathfrak{h}$ $\mathfrak{s}_{n}$ Weyl $\{\pm 1\}^{n}$ $\{\pm 1\}^{n-1}$ $S(\mathfrak{h})^{W}$ modify Schur Schur-Weyl duality Weyl Han $\mathrm{s}\mathrm{h}$-chandra ( ) (Schur ) as $\text{ }$ $\Sigma \mathrm{j}$ Hanish-Chandra IEI ZU $(\mathfrak{g})arrow S(\mathfrak{h})^{W}$

8 $(\mathfrak{g})$ (1) ZU (2) Harish-Chandra (1) (2) Hari $\mathrm{s}\mathrm{h}$-chandra Harish-Chandra Hari $\mathrm{s}\mathrm{h}$-chandra 5: $\mathfrak{g}\mathrm{t}_{n}$ $\mathfrak{g}\mathfrak{l}_{n}$ ( ) 2 1 ( Lie ) ( ;Lie ) $GL$ ( ) oscillator spin dual pair ( ) \sim [2 Lie $0_{n}$ s[2

$i$ 9 - fcapelli Lie Howe-Umeda multiplicity-free actions Capelli 6: (1) [Capelli ] Capelli Capelli $-$ typical $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\bm{\mathrm{r}}\mathrm{t}\mathrm{s}$ - Capeui ( ) ( ) (doubling the variables) R Howe dual pair (dual) Capelli dual $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}$ dual \searrow Ge and ( ) Newton Koszul cyclic cohomology

10 (2) [ ] R Lie $\mathrm{a}\mathrm{d}\mathrm{j}(\dot{\mathrm{n}}\mathrm{n}\mathrm{t}$ Capelli pshift $\rho-$-shift - Capelli ( ) $\mathrm{a}\mathrm{d}\mathrm{j}\dot{\alpha}\mathrm{n}\mathrm{t}$ - Euler Lie Capelli [1] 100 Capelli Identity Identities a century after in Selected Papers on Harmonic Analysi $\mathrm{s}$ $46(1994)$ 206-227 ( : The Capelli Groups and Invariants (Ed by K Nomizu) AMS Translations Series 2 vol 183 (1998) pp 51-78 [2] R Howe and T Umeda The Capelli identity the double commutant theorem and multiplicity-free actions Math Ann 290 (1991) 565-619 3175 [3] T Umeda Newton s $fo$ rmula for $\mathfrak{g}\mathfrak{l}_{n}$ Proc Amer Math Soc 126 (1998) 3169- [4] T Umeda On the proofs of the Capdli identities preprint 1997 [5] T Umeda On TUmbull identity for $skew- s\psi nmet\dot{n}c$ matrices Proc Edinburgh Math Soc 43 (2000) 379-393 [6] T Umeda Application of Koszul complex to Wronski relations for $U(\mathfrak{g}\mathfrak{l}_{n})$ Commentanii Math Helv 78 (2003) 663-680 [7] M Itoh and T Umeda On central elements in the universal enveloping algebras of

11 the orthogonal Lie algebras Compositio Math 127(2001) 333-359 [8] Capelli No 429 (1999 3 ) 39-46 [2] M Noumi T Umeda and M Wakayama A quantum analogue fo the Capelli identity and an elementary differential calculus on $GL_{q}(n)$ Duke Math J 76(1994) 567-595 [3] M Noumi T Umeda and M Wakayama Dual pairs spherical harmonics and a Capelli identity in quantum group theory Compositio Math 104(1996) 227-277 [5] M Itoh: Capelli identities for the dual pair $(O_{M} Sp_{N})$ Math Zeit 246(2004) 125-154 [6] A Wachi: Central elements in the universal enveloping algebras for the split realization of the orthogonal Lie algebras to appear in Lett Math Phys