1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes complex structure 2 Hopf h p : S 2p+1 CP p, h

Size: px
Start display at page:

Download "1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes 1953 2 complex structure 2 Hopf h p : S 2p+1 CP p, h"

Transcription

1 Non-Kähler complex structures on R 4 ( ) 1. Antonio J. Di Scala (Politecnico di Torino), Daniele Zuddas (KIAS) [1] R 4 non-kähler complex surfaces Kähler 1. (M, J) complex manifold M complex structure J symplectic form ω (M, J) Kähler ω J 2 (1) 0 u T M ω(u, Ju) > 0 (tamedness) (2) u, v T M ω(u, v) = ω(ju, Jv) (J-invariance) complex manifold Kähler complex structure ω Kähler non-kähler complex manifold Kähler Hermite Kähler Kähler [3] [9] [11] Siu[16] 2. Compact complex surface Kähler first Betti number b 1 compact complex surface b 1 Kähler non-kähler compact Kähler manifold Betti number b 2j+1 Hodge theory non-compact connected open orientable 4-manifold Kähler complex structure b 1 Stein manifolds non-compact complex manifold non-kähler 3. compact holomorphic curve complex manifold non-kähler Kähler manifold (M, J) compact complex curve C J symplectic form ω ω > 0 C nkasuyaoasi.aoyama.ac.jp

2 1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes complex structure 2 Hopf h p : S 2p+1 CP p, h q : S 2q+1 CP q h p,q : S 2p+1 S 2q+1 CP p CP q T 2 fiber bundle modulus τ elliptic curve S(τ) CP p CP q {U i U j } (0 i p, 0 j q) U i U j S(τ) h p,q holomorphic T 2 fiber bundle S 2p+1 S 2q+1 complex structure Calabi-Eckmann manifold M p,q (τ) M p,q (τ) open subset R 2n (n 3) non-kähler complex structure S 2p+1 S 2q+1 M p,q (τ) open subset E p,q (τ) p > 0, q > 0 E p,q (τ) h p,q elliptic fiber R 2(p+q+1) 3 non-kähler (n 3 n = p+q +1, p > 0, q > 0 ) R 4 non-kähler complex structure M 0,1 (τ) Hopf surface E 0,1 (τ) C 2 open subset n = 2 S 4 S 2 genus-one achiral Lefschetz fibration Matsumoto-Fukaya fibration 4 positive singularity negative singularity 1 negative singularity 4-ball R 4 fibration holomorphic complex structure holomorphic fibration regular fiber elliptic curve 3 R 4 non-kähler complex structure 4. 1 < ρ 2 < ρ 1 1 (ρ 1, ρ 2 ) complex manifold E(ρ 1, ρ 2 ) surjective holomorphic map f : E(ρ 1, ρ 2 ) CP 1 (1) E(ρ 1, ρ 2 ) R 4.

3 (2) f 1 (0) f singular fiber node 1 immersed holomorphic sphere. (3) f regular fiber 2 embedded holomorphic torus embedded holomorphic annulus complex manifold E(ρ 1, ρ 2 ) Matsumoto- Fukaya fibration negative Lefschetz singularity R 4 2 E(ρ 1, ρ 2 ) 2 complex structure biholomorphic biholomorphism Matsumoto-Fukaya fibration complex manifold R 4 complex manifold E(ρ 1, ρ 2 ) (ρ 1, ρ 2 ) (ρ 1, ρ 2) E(ρ 1, ρ 2 ) E(ρ 1, ρ 2) biholomorphic E(ρ 1, ρ 2 ) compact holomorphic curve R 4 non-kähler complex structure connected open orientable 4-manifold non-kähler complex structure Kähler complex structure CP 2 complex structure E(ρ 1, ρ 2 ) 1 blow up E(ρ 1, ρ 2 ) 3 complex manifold strictly pseudoconcave boundary overtwisted contact 3-sphere E(ρ 1, ρ 2 ) overtwisted contact 3-sphere concave holomorphic filling overtwisted contact 3-manifold concave holomorphic filling E(ρ 1, ρ 2 ) compact complex surface overtwisted contact manifold convex holomorphic filling 4 E(ρ 1, ρ 2 )

4 2. The Matsumoto-Fukaya fibration 1980 S 4 S 2 genus-one achiral Lefschetz fibration [10] Hopf fibration H : S 3 CP 1 suspension ΣH : S 4 S 3 f MF := H ΣH f MF regular fiber 2-torus suspension 2 pinched point Lefschetz singularity torus fibration f MF : S 4 S 2 Matsumoto- Fukaya fibration f MF 2 singular fiber singularity F 1, singularity F 2 S 4 F 1 tubular neighborhood N 1 F 2 tubular neighborhood N 2 S 2 S 2 = D 1 D 2 f MF (F j ) D j, D 1 = D 2 2 disk N 1 := f 1 MF (D 1), N 2 := f 1 MF (D 2) f MF N j f j (j = 1, 2) f 1 : N 1 D 1 singularity 1 genus-one Lefschetz fibration f 2 : N 2 D 2 singularity 1 genus-one achiral Lefschetz fibration Monodromy vanishing cycle right-handed Dehn twist, left-handed Dehn twist N 1 N 2 orientation reversing diffeomorphic N 1 N 2 diffeomorphism Kirby diagram Matsumoto-Fukaya fibration Kirby diagram 1 [13], Figure : The Matsumoto-Fukaya fibration on S 4. diagram 0-handle 2 1-handle once punctured torus 4 2-handle framing 0 2-handle once punctured torus torus torus fibration regular fiber 1-handle framing 1, framing handle Lefschetz singularity vanishing cycle 2-handle 1-handle framing 1 2-handle 2-handle N 1 N 2 diagram

5 singularity 2 vanishing cycle T 2 fiber 1 meridian N 1 N 2 T 2 fiber longitude 1 multiplicity-1 logarithmic transformation 2 2: The gluing of N 1 and N 2. N 1 N 2 = S 4 N 2 negative singularity X = B 4 X X D 2 negative singularity 1 annulus fibration (monodromy left-handed Dehn twist) negative Lefschetz singularity standard model B 4 N 1 (N 2 \X) R 4 N 2 \X singularity D 2 trivial annulus fibration A D 2 (A annulus) 5. A D 2 N 1. t D 2 = D 1 = S 1, A {t} f 1 1 (t) = T 2 thickened meridian, t S 1 1 T 2 longitude 1. R 4. R 4 N 1 A D 2 E(ρ 1, ρ 2 ) f : E(ρ 1, ρ 2 ) CP 1 f MF N 1 (N 2 \X) complex manifold

6 N 1 (N 2 \X) = R 4 Kirby diagram 3 1 X vanishing cycle framing 1 2-handle, 3-handle, 4-handle 3: The map f on S 4 \X = R E(ρ 1, ρ 2 ) complex manifold E(ρ 1, ρ 2 ) 5 2 N 1 A D 2 complex structure (r) := {z C z < r}, (r 1, r 2 ) := {z C r 1 < z < r 2 }. ρ 0, ρ 1, ρ 2 0 < ρ 0 < ρ 1 < 1 < ρ 2 < ρ 1 1 complex structure A D 2 holomorphic annulus holomorphic disk (1, ρ 2 ) (ρ 1 0 ) N 1 genus-one Lefschetz fibration f 1 : N 1 D 1 elliptic fibration complex structure elliptic surface I 1 singular fiber (0, ρ 1 ) elliptic fibration, n Z π : C (0, ρ 1 )/Z (0, ρ 1 ) n (z, w) = (zw n, w) (ρ 1 ) singular elliptic fibration g 1 : W (ρ 1 ) I 1 singular fiber ([4]) W (1, ρ 2 ) (ρ 1 0 ), E(ρ 1, ρ 2 ) (1, ρ 2 ) (ρ 1 1, ρ0 1 ) W (1, ρ 2 ) (ρ 0, ρ 1 ) biholomorphic φ : (ρ 0, ρ 1 ) C ( 1 φ(w) = exp 4πi (log w)2 1 ) 2 log w

7 φ(re i(θ+2π) ) = re iθ φ(re i(θ) ) = wφ(w) (1) φ 1 Z C π holomorphic section φ Y := {(zφ(w), w) C (ρ 0, ρ 1 ) z (1, ρ 2 )} Y Z V := Y/Z φ holomorphic section (1, ρ 2 ) (ρ 0, ρ 1 ) biholomorphic V W biholomorphism j j : V = (1, ρ 2 ) (ρ 0, ρ 1 ) (1, ρ 2 ) (ρ 1 1, ρ 1 0 ); (z, w) (z, w 1 ).. E(ρ 1, ρ 2 ) := W j ( (1, ρ2 ) (ρ 1 0 ) ) R 4 V (1, ρ 2 ) fiber φ φ (1) w 0 1 (1, ρ 2 ) elliptic curve longitude 1 (1) φ w 2π w (1, ρ 2 ) elliptic curve C /Z C meridian, longitude W (1, ρ 2 ) (ρ 1 0 ) 5 E(ρ 1, ρ 2 ) R 4 f (ρ 1 ), (ρ 1 0 ) W g 1, (1, ρ 2 ) (ρ 1 0 ) 2nd factor (ρ 1 ) (ρ 1 0 ) biholomorphism (ρ 0, ρ 1 ) (ρ 1 1, ρ 1 0 ); w w 1 CP 1 f : E(ρ 1, ρ 2 ) CP 1 E(ρ 1, ρ 2 ) f 4. E(ρ 1, ρ 2 ) E(ρ 1, ρ 2 ) f [1], [2] compact holomorphic curve 6. E(ρ 1, ρ 2 ) compact holomorphic curve f compact fiber

8 Proof. i: C E(ρ 1, ρ 2 ) compact holomorphic curve C compact Riemann surface, i holomorphic immersion f i: C CP 1 constant map f i compact Riemann surface holomorphic map branched covering map constant map C E(ρ 1, ρ 2 ) CP 1 contractible space E(ρ 1, ρ 2 ) = R 4 null-homotopic branched covering map f i constant map compact holomorphic curve f 1 (w) (w (ρ 1 )) w 0 f 1 (w) modulus 1 log w elliptic curve 2πi R 4 non-kähler complex structure 7. (ρ 1, ρ 2 ) (ρ 1, ρ 2) E(ρ 1, ρ 2 ) E(ρ 1, ρ 2) biholomorphic Proof. biholomorphism Φ: E(ρ 1, ρ 2 ) E(ρ 1, ρ 2) ρ 1 = ρ 1, ρ 2 = ρ 2 Φ compact curve compact curve Φ(W ) = W elliptic curve modulus elliptic curve Φ W fiberwise biholomorphism base map (ρ 1 ) (ρ 1) identity ρ 1 = ρ 1 analytic continuation Φ E(ρ 1, ρ 2 ) fiberwise biholomorphism annulus fiber (1, ρ 2 ) annulus fiber (1, ρ 2) biholomorphic ρ 2 = ρ 2 Picard group Pic(E(ρ 1, ρ 2 )) O CP 1(k) CP 1 first Chern class k holomorphic line bundle, L k f E(ρ 1, ρ 2 ) line bundle f line bundle Picard group homomorphism f 8. f : Pic(CP 1 ) Pic(E(ρ 1, ρ 2 )) injective Pic(E(ρ 1, ρ 2 )) complex vector space Proof. L k O CP 1(k) L k nonvanishing holomorphic section τ O CP 1(k) (ρ 1 ), (ρ 1 0 ) σ 1, σ 2 nonvanishing holomorphic section f W 1 := W nonvanishing section f (σ 1 ) W 2 := (1, ρ 2 ) (ρ 1 0 ) nonvanishing section f (σ 2 ) W j holomorphic function τ j (j = 1, 2) τ Wj = τ j f (σ j ) W 1 = W compact fibers foliate τ 1 fiberwise constant (ρ 1 ) holomorphic function u 1 τ 1 = f (u 1 ) V = W 1 W 2 f (u 1 σ 1 ) = τ 2 f (σ 2 )

9 τ 2 V fiberwise constant analytic continuation τ 2 W 2 fiberwise constant, (ρ 1 0 ) holomorphic function u 2 τ 2 = f (u 2 ) u 1 σ 1 u 2 σ 2 O CP 1(k) nonvanishing holomorphic section O CP 1(k) f injectivity Pic(CP 1 ) = Z Pic(E(ρ 1, ρ 2 )) Z sheaf cohomology long exact sequence Pic(E(ρ 1, ρ 2 )) = H 1 (E(ρ 1, ρ 2 ), O ) = H 1 (E(ρ 1, ρ 2 ), O) H 1 (E(ρ 1, ρ 2 ), O) complex vector space Pic(E(ρ 1, ρ 2 )) complex vector space Z E(ρ 1, ρ 2 ) holomorphic vector bundle L k1 L k2 L kn (k 1 k 2 k n ) R 2n+4 biholomorphic non-kähler complex structure Calabi Eckmann complex structure compact holomorphic curve ([2], Theorem 4) 9. connected open orientable 4-manifold M 4 non-kähler complex structure Phillips [15] 10. M open manifold d: Sub(M, V ) Epi(T M, T V ); f df Sub(M, V ) M V submersion Epi(T M, T V ) T M T V surjective homomorphism M parallelizable M R n (n dim M) submersion M 4 parallelizable open 4- manifold (open spin 4-manifold ) C 2 immersion g : M 4 C 2 g C 2 complex structure M 4 Kähler complex structure M 4 connected open orientable 4-manifold CP 2 M 4 alomost complex structure Teichner-Vogt [17] Gompf [12] 9 Proof. M 4 spin ( paralleizable ) 10 M 4 E(ρ 1, ρ 2 ) = R 4 immersion h: M 4 E(ρ 1, ρ 2 ) h(m 4 ) elliptic curve rescaling

10 M 4 complex structure non-kähler h immersion 4-ball B M 4 embedding ρ 1 < ρ 1, ρ 2 < ρ 2 E(ρ 1, ρ 2) E(ρ 1, ρ 2) E(ρ 1, ρ 2 ) R 4 open 4-ball h(b) E(ρ 1, ρ 2 ) R 4 open 4-ball h(b) E(ρ 1, ρ 2) R 4 diffeomorphism diffeomorphism rescaling h(b) = E(ρ 1, ρ 2) h E(ρ 1, ρ 2 ) complex strcutre M 4 complex structure E(ρ 1, ρ 2) holomorphic M 4 non-kähler complex structure (ρ 1, ρ 2 ) (ρ 1, ρ 2) elliptic curve modulus M 4 non-spin E(ρ 1, ρ 2 ) 1 blow up E(ρ 1, ρ 2 ) 11. E(ρ 1, ρ 2 ) A (E(ρ 1, ρ 2 )\A) strictly pseudoconcave boundary negative overtwisted contact 3-sphere E(ρ 1, ρ 2 ) A overtwisted contact 3-sphere concave holomorphic filling contact structure negative Hopf band negative contact structure, S 3 standard contact structure Hopf fiber half Lutz twist negative orientation E(ρ 1, ρ 2 ) X negative Lefschetz singularity standard model strictly pseudoconcavity strictly pseudoconcave boundary complex tangency negative contact structure d 3 -invariant contact structure E(ρ 1, ρ 2 ) S 3 concave hypersurface [1] A. J. Di Scala, N. Kasuya and D. Zuddas, Non-Kähler complex structures on R 4, arxiv: (2015). [2] A. J. Di Scala, N. Kasuya and D. Zuddas, Non-Kähler complex structures on R 4 II, arxiv: (2015). [3] K. Kodaira, On Compact Complex Analytic Surfaces: I, Ann. of Math. 71 (1960), [4] K. Kodaira, On Compact Analytic Surfaces: II, Ann. of Math. 77 (1963), [5] K. Kodaira, On Compact Analytic Surfaces: III, Ann. of Math. 78 (1963), 1 40.

11 [6] K. Kodaira, On the structures of compact complex analytic surfaces: I, Amer. J. Math. 86 (1964), [7] K. Kodaira, On the structures of compact complex analytic surfaces: II, Amer. J. Math. 88 (1966), [8] K. Kodaira, On the structures of compact complex analytic surfaces: III, Amer. J. Math. 90 (1968), [9] K. Kodaira, On the structures of compact complex analytic surfaces: IV, Amer. J. Math. 90 (1968), [10] Y. Matsumoto, On 4-manifolds fibered by tori, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 7, [11] Y. Miyaoka, Kähler metrics on elliptic surfaces, Proc. Japan Acad. Ser. A Math. Sci. 50 (1974), [12] R. E. Gompf, Spin c -structures and homotopy equivalences, Geom. Topol. 1 (1997), [13] R. E. Gompf and A. I. Stipcitz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999). [14] A. Phillips, Submersions of open manifolds, Topology 6 (1967), [15] Y. T. Siu, Every K3 surface is Kähler, Inv. Math. 73 (1983), [16] P. Teichner and E. Vogt, All oriented 4-manifolds have spin c -structures, preprint (1994).

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L) W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K 2 admits a Stein diagram h 0 h 1 h 2 h 2 is attached

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

eng10june10.dvi

eng10june10.dvi The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University 1 2 1. Gaussian curvature K Figure 1. (Surfaces of K0 L p (r) =the length of the geod. circle of

More information

C:/yokoyama/book/fubook/tft/tft5h/tft5h.dvi

C:/yokoyama/book/fubook/tft/tft5h/tft5h.dvi 1997.10 2000 10 15 ver. 2.72 i 1 1 1.1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.3 :

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0 2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0) = + a i 0 i=0 v T Λ R 0 = {x Λ R v T (x) 0} R Remark

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

( ) ( ) (B) ( , )

( ) ( ) (B) ( , ) () 2006 2 6 () 2006 2 6 2 7 7 (B) ( 574009, ) 2006 4 .,.. Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

References tll A. Hurwitz, IJber algebraischen Gebilde mit eindeutige Transformationen Ann. in sich, Math. L27 A. Kuribayashi-K. Komiya, On Weierstrass points of non-hyperelliptic compact Riemann surfaces

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $ 863 1994 132-142 132 Horocycle Rigidity (Ryuji Abe) 1 Introductjon Horosphere horocycle v horocycle horocycle flow $\circ$ M. Ratner [Rl horocycle flow N 2 Riemann $M_{c}$ $N_{c},$ $M_{c} $ Ratner $M$

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

広報さがみはら第1242号

広報さがみはら第1242号 LINE UP 3 1 5 6 1 NO.1242 S A G A M I H A R A 1 1 1 16 16 1 6 1 6 1 6 1 1 1 1 1 11 1 1 1 1 1 1 6 1 6 1 1 1 1 1 1 1 1 11 1 1 16 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 16 1 16 1 6 1 1 1 1 1 1

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

36

36 36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ

More information

第73回 微分同相群のトポロジー Smale予想を巡って 2019 年 3 月 16 日 (土) 10:00 於 東京都 文京区 春日 中央大学理工学部 5 号館 5534 教室 3 月 16 日 (土) 10:00 11:00 11:20 12:20 13:50 14:50 15:

第73回 微分同相群のトポロジー Smale予想を巡って 2019 年 3 月 16 日 (土) 10:00 於 東京都 文京区 春日 中央大学理工学部 5 号館 5534 教室 3 月 16 日 (土) 10:00 11:00 11:20 12:20 13:50 14:50 15: 第73回 微分同相群のトポロジー Smale予想を巡って 2019 年 3 月 16 日 (土) 10:00 於 東京都 文京区 春日 1-13-27 中央大学理工学部 5 号館 5534 教室 3 月 16 日 (土) 10:00 11:00 11:20 12:20 13:50 14:50 15:10 16:10 16:30 17:30 17:40 微分同相群は Lie 群 だろうか 4 次元球面の微分同相群

More information

H = H 1 (Jac(R); Z) Sp 1 H (Jac(R); Z) = Λ Z H, H (Jac(R); Z) = Λ Z H = Λ Z H Poincaré duality canonical ( ) canonical symplectic form foliation (2) F

H = H 1 (Jac(R); Z) Sp 1 H (Jac(R); Z) = Λ Z H, H (Jac(R); Z) = Λ Z H = Λ Z H Poincaré duality canonical ( ) canonical symplectic form foliation (2) F 6 11 5 1 Sp-modules symplectic Sp-module low dimensional., 0 1, 2, 3, 4 (n),. foliation n. Sp-modules, intersection form H = H 1 (Σ; Z), µ : H H Z H rank 2g free module Q C Q foliation R Q, R H Q = H Q,

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

1 [BPZ] model Wess-Zumino-Witten model,, compact Riemann, principal G-bunlde quasi parabolic structure) family, family base space twisted D-module) 11

1 [BPZ] model Wess-Zumino-Witten model,, compact Riemann, principal G-bunlde quasi parabolic structure) family, family base space twisted D-module) 11 2003 12 26 ) 71 1995 11 2 ) 1 2 2 Twisted diffrential operator tdo) 6 21 compact Riemann quasi parabolic G-bundle 6 22 compact Riemann quasi parabolic G-bundle family 6 23 Lie algebroid dg Lie algebroid

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証- 日 本 版 General Social Surveys 研 究 論 文 集 [6] JGSS で 見 た 日 本 人 の 意 識 と 行 動 JGSS Research Series No.3 JGSS Women s Higher Education and Marriage Timing in an era of employment uncertainty Yuko NOZAKI Graduate

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

DVIOUT-prog21

DVIOUT-prog21 The 21th Symposium on Complex Geometry Kanazawa 2015 Oct. 28 9:00-11:00 Toshiki Mabuchi (Osaka University) The Donaldson-Tian-Yau Conjecture and the moduli space of test configurations 10:30-11:30 Charles

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

abstract-body.pdf

abstract-body.pdf 57 2010 8 6 9 Z201/202 A B Z201/202 30 8 6 15:00 15:50 A... 1 Correspondence theorems for tropical curves 16:10-17:00 A Xia Changyu (Universidade de Brasília)... 11 Sobolev type inequalities on Riemannian

More information

The painter of the Lascaux Cave (B.C.15,000) knew the geometry of apparent contours. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 2 / 5

The painter of the Lascaux Cave (B.C.15,000) knew the geometry of apparent contours. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html 25 ( ) 2 / 5 1 / 52 25 http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html The painter of the Lascaux Cave (B.C.15,000) knew the geometry of apparent contours. http://www.math.sci.hokudai.ac.jp/ ohmoto/class.html

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

28 207 3 208 8 6 206 0 3 4 Kauffman Lambropoulou [50 53]( ) ( ) tangle (2-) 2 2 4 Conway [0] Conway 0 ( ) 4 2 2 ( ) Conway 2 4 (+?) ( ) Conway Kauffman Lambropoulou Kauffman Krebes Schubert DNA 8-207

More information

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0)D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C Thomas [22] Bridgeland K3 2 Harder- Narasimhan 2.1 2.1.

More information

2

2 III ( Dirac ) ( ) ( ) 2001. 9.22 2 1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information