Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(2n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kas

Size: px
Start display at page:

Download "Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(2n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kas"

Transcription

1 Reductive Dual Pair Weil compact Weil Howe duality non-compact pair Sp(n; R) O(k) U(p; q) U(k) popular K-type Sp O x7 [Kashiwara-Vergne] [Howe4, Howe6] 3 (?) x7 Gelfand-Kirillov Bernstein Bernstein Selberg 1 G : Lie ( ) G (Cartan-Weyl ) G GC G GC 1 1 Weyl Flensted-Jensen Flensted-Jensen duality 3 1

2 Young [Fulton-Harris], [Knapp], [ ] bg G b G V G ( ) (ρ; H) H ' X Φ XΦ X Φ Hom G (V ;H) Ω V ' (H Ω V Λ ) G Ω V b G b G b G (H Ω V Λ ) G Ω V 3 X h Ω v Λ Ω v 7! v Λ (v)h H (H Ω V Λ )G V H X G G-( ) H = L (X) G (H Ω V Λ ) G = (L (X) Ω V Λ) G ' ff : X! V Λ j f(xg) = Λ (g) 1 f(x) (g G)g =: L (X; V Λ) L (X) L (X) ' X Φ ' b G L (X; V Λ) Ω V X Φ b G HomC V Λ;L (X; V Λ) P : L (X)! HomC Z V Λ ;L (X; V Λ ) ; (P f)(v Λ )(x) = f(xg) Λ (g)v Λ dg G V fe i j 1» i» dim V g fe Λ i j 1» i» dim V gρ V Λ = V Λ X dim XV Z L (X) 3 f(x) $ f(xg) Λ (g)e Λ i dg X Ω e i L (X; V Λ) Ω V b G b G i=1 G () Peter-Weyl

3 Exercise 1.1 (1) () X = G L (G; V Λ) G L (G; V Λ) ' V Λ Peter-Weyl () Peter-Weyl L (G) G G dual pair Weil tensor 1 Sp(n; R) Weil (L; L (R n )) k tensor tensor 1. unitary highest weight Weil K-weight ( ) tensor () " 3. (pluriharmonic functions) tensor ( lowest K-type) tensor Ω k L (R n ) ' L (R n Φ ΦR n ) ' L (R n Ω R k ) ' L (M(n; k; R)) (L; L (R n )) Sp(n; R) Φ Ψ» 0 Sp(n; R) = g SL(n; R) j t 1n gjg = J ; J = 1 n 0 4 L Ωk» a t a 1 f(x) = (det a) k= f( t ax)(a GL(n; R)) (.1) L Ωk» 1 b 1 L Ωk» f(x) = exp( i Tr t xbx=)f(x)( t b = b) (.) f(x) = i ß nk= Z exp(i Tr t xy)f(y)dy (.3) M(n;k;R) metaplectic theta (Gauss ) Sp(n; R) 3 [EHW], [Jakobsen], [Parthasarathy] 4 Sp(n; R) Sp(n; R) 3

4 k k O(k) L (M(n; k; R)) Sp(n; R) Fourier Tr ( ) O(k) Exercise.1 O(k) Sp(n; R) Example. k = 1 Weil O(1) = Z intertwiner Weil L = L + Φ L O(1) R n f±1g 5 O(k) tensor Sp(n; R) O(k) ρ Sp(nk; R) dual pair Definition.3 ([Howe], [Howe4]) (reductive) dual pair Sp(n; R) reductive (G; G 0 ) G Sp(n; R) commutant subgroup G 0 G 0 commutant subgroup G Remark. dual pair Sp(n; R) Weil dual pair commutant algebra dual pair Howe correspondence Theorem.4 ([Howe4]) (G; G 0 ) ρ Sp(n; R) dual pair G 0 X Φ L ' Hom G 0(V ;L) Ω V c G 0 Hom G 0(V ;L)=L (R n ; Λ ) G (G 0 )^ 3 7! L (R n ; Λ ) G^ L (R n ; Λ ) 6= 0 (Howe ) 5 O(1) = Z metaplectic 4 Z 4 intertwiner 4 " f( x) =if(x) L 0 dual pair 4

5 Remark. G Hermitian type L (R n ; Λ ) 6= 0 non-compact ([Howe5]) [Howe1] primitive O(p; q) SL(; R) Example.5 U(p; q) U(1) ρ Sp(n; R) (n = p + q; p q) dual pair (U(1) U(p; q) ) U(1) U(1) 3 e i 7! e ik (k Z) k Sp(n; R) Weil (L; L (R n )) dual pair X (L; L (R n Φ )) ' L (R n ; k ) Ω k kz Z ladder Sp(n; R) Weil k tensor dual pair Sp(n; R) O(k) ρ Sp(nk; R) Sp Weil pair L (M(n; k; R)) ' X Φ O(k)^ L (M(n; k; R); V ) Ω V Λ L (M(n; k; R); V )= ff : M(n; k; R)! V j f(xh) = (h) 1 f(x) Sp(n; R) dim V Λ (x M(n; k; R);h O(k))g 3 : L (M(n; k; R); V ) Siegel G = Sp(n; R) Siegel H n H n ' G=K (K ' U(n)) K ρ» ff A B K = B A fi A + ib U(n) G Lie g gc k; kc g = k Φ p Cartan pc K adjoint pc K p ± gc = p Φ kc Φ p + (Exercise 7.4 ) 5

6 Exercise 3.1 G=K ' H n = fz Sym(n; C ) j Im z > 0g (1) G = Sp(n; R) H n» a b G 3 g = H c d n 3 z 7! g z =(az + b)(cz + d) 1 H n well-defined (Hint) () p 1 1 n H n K G=K ' H n (1) G=K 3 gk $ g p 1 1 n H n Exercise 3. (1) K G K K = fg G j gkg 1 = Kg [Hint] Cartan 6 G = KAK ([Knapp, Theorem 5.0]) A G split Cartan () well-defined G=K 3 gk 7! gkg 1 fk G- g G G Siegel (3) p- Siegel H n Sp(n; R) cohomological induction 7 (fi;u fi ) KC = GL(n; C ) O(H n ; fi) = ff : G! U fi : C 1 j f(gk) =fi(k 1 )f(g);r(x)f =0(X p )g ' ff : H n! U fi : holomorphic g R(X) X gc X g R(X)f(g) = d dt f(g exp tx) fi t=0 gc G O(H n ; fi) G Siegel a b (T (fi)(g)f)(z) =fi( t (cz + d))f((az + b)(cz + d) 1 ) z H n ;g 1 = (3.1) c d 6 Lie Cartan A Lie p ( Cartan ) 7 cohomological induction [Knapp-Vogan, Theorem 8.], [Wallach, Theorem 6.7.6] lowest K-type 1 cohomological induction ( ) lowest K-type 1 [Adams] 6

7 Exercise 3.3 (1) G = Sp(; R) = SL(; R) P : C 1 (G; fi) 3 f 7! F O(H;fi)» a x F (z) =fi(a)f (z = ax + a i (a >0)) 0 a 1 fi(e i )=e im fi(a) =a m (a C ) C 1 (G; fi) =ff : G! U fi : C 1 j f(gk) =fi(k) 1 f(g)g kc = ρ» 0 0 fi C ff ; p ± = ρ» ' ±i' ±i' ' fi ' C ff R(X)f(g) =0(X p ) F (z) Cauchy-Riemann () P G- O(H;fi) G (3.1) (3) F (z) =fi((z + i)=i) F (z) X p + O(H n ; fi) fi 8 Weil intertwining F P : L (M(n; k; R); V )!O(H n ; fi Ω det k= ) P : M(n; k; R)! HomC (U fi ;V ) ' U fi Λ Ω V : (F P f)(z) = Z M(n;k;R) e (i=) Tr(t xzx) P (x) Λ f(x)dx (f L (M(n; k; R); V )) (3.) F P Sp(n; R) intertwining P (x) (1) P (xh) = (h) 1 P (x) (h O(k)) () P (ax) =P (x)fi(a) 1 (a GL(n; C )) (3) P (x) O(k)-harmonic P (x) Λ U fi Ω V Λ ;U fi ) F P f O(H n ; fi) (1) V L f(x) (h)f(xh) 8 O(H n ; fi) Verma paring hf;d Ω vi = h(r(d)f)(1);vi fi (f O(H n ; fi);dω v U(g C ) Ω U(k CΦp ) U fi ) 7

8 f(x) (h O(k)) F P L (M(n; k; R); V ) (h)f(xh) =f(x) () g(a) F P t(b) F P g(a) = a t a 1 (a GL(n; R)); t(b) = 1 b 1 ( t b = b) (3) ff (Fourier ; (.3) ) Exercise ff = 1 0 Theorem 3.4 ([Kashiwara-Vergne]) P (x) (1) (3) F P : L (M(n; k; R); V )! O(H n ; fi Ω det k= ) intertwining O(H n ; fi Ω det k= ) L (M(n; k; R); V ) 9 Remark. L (M(n; k; R); V ) k» n 1 k n +1 =) L (M(n; k; R); V ) k =n =) L (M(n; k; R); V ) k» n 1 =) L (M(n; k; R); V ) Exercise 3.5 F P ff (1) Parseval P Fourier e (i=)tr txzx P (x) Λ ^ (y) = det z k= e (i=)tr t y( z 1)y P ( z 1 y) Λ i (x; y M(n; k; R);z H n ) F ^(y) R nk ' M(n; k; R) Fourier () z = iff ( t ff = ff) z = iff expf (1=) Tr t xxgp (x) Λ ^ (y) = expf (1=) Tr t yygp ( iy) Λ 9 L (M(n; k; R); V ) dual pair (.4) [Kashiwara-Vergne] 8

9 (3) y y = ifi P (fi) Λ = (nk=) P (r! + fi) ß ZΩ Λ d! (r >0; d! (nk 1)- Ω ) nk= () Exercise 3.6 P (x) (1) C = fο M(n; n; R) j t ο = ο;ο 0g C k = fο C j rank ο» kg Q : M(n; k; R)=O(k)! C k [j [j x 7! ο(x) =x t x GL(n; R)- () f(x) L (M(n; k; R); V ) P (x) Λ f(x) O(k)- '(x t x)=p (x) Λ f(x) C k (3) C k d k ο C k ' Z C k '(ο)d k ο = Z M(n;k;R) '(x t x)dx F P f(z) = Z C k e (i=)tr ο z '(ο)d k ο F P '(ο)d k ο Fourier-Laplace 4 F P P (x) O(H n ; fi)? P (x) H =(O(k)- ) K V K- K- ( [Helgason] ; [ 1] ) f(v) C [V ] def =0(8h S(V ) K + ) 9

10 O(k) H = ( f : M(n; k; C )! C fi i;jf = j;ν f =0(1» i» j» n) (1) (3) P (x) H GL(n; C ) O(k;C ) joint action Theorem 4.1 ([Howe6, Proposition 3.6.3]) H GL(n; C ) O(k;C ) 1 X Φ H = U fi (D) Ω V (D) D D Young 10 (= `(D)) minfk; ng D =(μ 1 ; ;μ k ) `(D) > k= μ j = 1 (`(D) j > k `(D)) ρ (μ1 ; ;μ fi(d) =(μ 1 ; ;μ n ); (D) = k ) GL(n; C ) O(k;C ) 11 (`(D)» k=) (μ 1 ; ;μ k `(D) ) (`(D) >k=) Theorem 4. (1) M(n; k; C ) C [M(n; k; C )] O(k;C )- : C [M(n; k; C )] = H C [M(n; k; C )] O(k;C ) O(k;C )^ O(k;C ) C [M(n; k; C )]( ) = H( ) C [M(n; k; C )] O(k;C ) H( ) GL(n; C ) O(k;C ) H( ) =(C [M(n; k; C )]( ) ) 10 Young D μ =(μ 1 ; ;μ k ) μ 1 μ μ l > 0=μ l+1 = = μ k 0 `(D) =`(μ) =l (0 μ i ) 11 SO(k) O(k) [Howe6, x3.6.] SO(k) ffl `(D) =l<k= V (D) SO(k) D =(μ 1 ; ;μ l ) SO(k) ffl `(D) =k= V (D) SO(k) (μ 1 ; ; ±μ k= ) ffl `(D) =l>k= V (D) SO(k) D 0 =(μ 1 ; ;μ k l ) SO(k) O(k) V (D) = V (D 0 ) Ω det ) 10

11 () k>n tensor C [M(n; k; C )] = HΩC [M(n; k; C )] O(k;C ) O(k;C ) eο i;j (x) = kx ν=1 x i;ν x j;ν (x M(n; k; C ); 1» i; j» n) e οi;j C [M(n; k; C )] O(k;C ) : C [M(n; k; C )] O(k;C ) = C [e οi;j j 1» i; j» n] n k Sym(n) Q Q : M(n; k; C )! Sym(n) [j [j x 7! x t x (Exercise 3.6 ) Q(ax) =aq(x) t a (a GL(n; C )) Q(xh) =Q(x) (h O(k;C )) Q Λ : C [Sym(n)]! C [M(n; k; C )] O(k;C ) : surjective GL(n; C )-homomorphism Theorem 4.3 (1) GL(n; C ) C [Sym(n)] C [M(n; k; C )] O(k;C ) C [Sym(n)] ' () GL(n; C ) X Φ D;`(D)»n U fi (D) ; C [M(n; k; C )] O(k;C ) ' k n C [Sym(n)] ' C [M(n; k; C )] O(k;C ), k<n C [Sym(n)] 6' C [M(n; k; C )] O(k;C ) X Φ E;`(E)»minfn;kg U fi (E) fe οi;j j 1» i» j» ng k n k<n P : M(n; k; C )! V Λ Ω U fi 3.4 GL(n; C ) O(k; C ) P (HΩ(V X GL(n;C ) O(k;C ) Λ Ω U fi )) ) O(k;C ) = (V (D) Ω U fi (D) ) Ω (V Λ Ω U fi ) GL(n;C D = X D V (D) Ω V Λ O(k;C ) Ω U fi (D) Ω U fi GL(n;C ) ' ρ C if = (D) andfi Λ = fi(d) for 9D 0 otherwise 11

12 P 6= 0 ( Λ ;fi)=( (D) Λ ;fi(d) Λ ) P 5 Weil tensor Weil infinitesimal Lie tensor lowest K-type S(R n ) ρ L (R n ) Schwartz G = Sp(n; R) Lie gc = sp(n; C )» Ei;j A i;j = 0 t 7! x E i + 1 j ffi i;j» 0 Ei;j + E B i;j = j;i 7! p 1 x 0 0 i x j C i;j =» 0 0 E i;j + E j;i 0 7! j E i;j (i; j) 1 Exercise 5.1 A i;j ;B i;j (.1) (.) C i;j» 0 1 Adff(B i;j )= C i;j ; ff = 1 0 ff K ( [Howe-Tan, xiii..1] ) Fock type L Schrödinger type a i =(x i ) ; a Λ i =(x i i ) v = exp( jxj =) S(R n ) Φ Φ:C [a i j 1» i» n] 3 p(a 1 ; ;a n ) 7! p(a 1 ; ;a n )v S(R n ) a Λ i S(Rn ) Φ a Λ i v =0; [a Λ i ;a j ]=ffi i;j a Λ i C [a i j 1» i» i gc C [a i j 1» i» n] 1

13 kc (1) A i;j A j;i (i 6= j) () B i;j C i;j (1) C [a i j 1» i» n] x x i = a i + a Λ i aλ j a j x j = i (a ia Λ j a i a j ) $ a j () B i;j C i;j p 1 x i x $ p j a j (1), () kc a + j i i a j gl(n; C ) 1= "(renormalized) k ( ) pc (3) A i;j + A j;i (4) B i;j + C i;j (3) : x i p 1 ψ n X j=1 a + + x j $ i a ia j j (4) : p 1 x i x j $ p j 1 ia j j pc a i a j 13

14 kc ff p,fa i a j g; p j (5.1) k tensor L (M(n; k; R)) ffs(m(n; k; R)) ff C [M(n; k; R)]e Tr t xx= =Φ(C [a i;j j 1» i» n; 1» j» k]) (5.) C [M(n; k; R)]e Tr t xx= (gc ;K)- C [a i;j j 1» i» n; 1» j» k] (gc ;K)- Lemma 5. Sp(nk; R) L (M(n; k; R)) Harish-Chandra (gc ;K)- 1 C [a i;j j 1» i» n; 1» j» k] Φ (lowest K-type), p + C [a i;j j 1»i»n;1»j»k] f p +, f O(k)- i.e., f H Theorem 4. C [a i;j j 1»i»n;1»j»k] = H C [a i;j j 1»i»n;1»j»k] O(k) = X Φ D;`(D)»minfn;kg H( (D)) C [a i;j j 1»i»n;1»j»k] O(k) (5.3) H( (D)) ' V (D) Ω U fi (D)+ k 1 13 U fi (D)+ k 1 lowest K-type sp(n; C ) L(fi(D)+ k 1) H( ) C [a i;j j 1»i»n;1»j»k] O(k) = V Ω L(fi(D)+ k 1) 1 =(1; 1; ; 1) (gc ;K)- L(fi(D)+ k 1)=L (M(n; k; R) : Λ ) K 14 G V V K V K- 1 Harish-Chandra 13 K C ' GL(n; C ) renormalize k 1 1 =(1; 1; ; 1) 14 L (M(n; k; R); ) 'O(H n ; fi Ω det k= ) det k= K C -weight k 1 k 1 14

15 k>n Theorem 4. tensor X C [a i;j ]=HΩC[a i;j ] O(k) Φ = V (D) Ω L(fi(D)+ k 1) = U fi (D)+ k 1 Ω C [a i;j ] O(k) = 8 >< >: D U fi (D)+ k 1 Ω X Φ E;`(E)»n U fi (E) U fi (D)+ k 1 Ω C [a i;j ] O(k) (KC = GL(n; C ) ) U(gC ) Ω U(p+ ΦkC) U fi (D)+ k 1 ((gc ;K) ) L(fi(D)+ k 1) [ ], [Schmid], [Varadarajan] K-type K- type Blattner [Knapp, p. 736], [Knapp-Vogan, (5.108b)], [Hecht-Schmid] K- type U fi (D)+ k 1 Ω U fi (E) K-type 15 : Fock type lowest K-type 6 (cf. [, x., x.3]) ( Fourier ) x4 P (x) M(n; k; R) O(k) GL(n; C ) ( ; fi)- P 6= 0 Young D ( ; fi) =( (D);fi(D) Λ ) (cf. Theorem 4.1) P (x) Fourier F P (3.) Definition 6.1 H n H n U Λ fi Ω U fi - K D (z; w) (1) K D (z; w) Λ = K D (w; z) () 8u U fi K D (z; w)u z H n U fi - K D (z; w)u O(H n ; fi) (3) L fi = L(fi + k 1) ρ O(H n; fi) 8f(z) L fi 8u U fi hf(w);ui Ufi = hf(z);k D (z; w)ui Lfi 15 Steinberg [Humphreys, x4.4] Littlewood-Richardson tensor [Macdonald, xi.9] 15

16 L fi h; i Lfi L (M(n; k; R); V ) L h; i L hf(z);g(z)i Lfi = hf 1 1 P f(x); F P g(x)i L Remark. [Kashiwara-Vergne] K (z; w) fi Young D K D (z; w) Exercise 6. unique (cf. [, p.51]) Theorem 6.3 K D (z; w) = Z M(n;k;R) e (i=)tr t x(z w)x P (x) Λ P (x)dx Proof. (1), () (3) u U fi f(z) L fi ρo(h n ; fi) 9'(x) L (M(n; k; R); V ) F P ' = f hf(z);k D (z; w)ui Lfi = h(f P ')(z);k D (z; w)ui Lfi = h'(x); (F P ) 1 K D (z; w)ui L K D (z; w)u = Z M(n;k;R) e (i=)tr txzx P (x) Λ e (i=)tr txwx P (x)u dx = F P e (i=)tr t xwx P (x)u (z) ( ) = h'(x);e (i=)tr txwx P (x)ui L = = = Z Z M(n;k;R) fiz M(n;k;R) M(n;k;R) e (i=)tr t xwx h'(x);p(x)ui V dx e (i=)tr t xwx hp (x) Λ '(x);ui Ufi dx e (i=)tr t xwx P (x) Λ '(x)dx; u = hf P '(w);ui Ufi = hf(w);ui Ufi () 16 fl U fi

17 K D (z; w)u = F P e (i=)tr t xwx P (x)u w = i, u = u fi U fi K D (z; i)u fi = F P e (1=)Tr txx P (x)u fi (z) e (1=)Tr t xx P (x)u fi x5 (5.) (5.3) L (M(n; k; R); V ) K D (z; i)u fi Fourier Exercise 6.4 w 6= i K D (z; w)u fi (cf. Exercise 3.) (z) z w K D (z; w) =ff fi i ff R ff = ke (1=)Tr t xx P (x)u fi k L ku fi k fi 7 Gelfand-Kirillov Bernstein Howe n (n =1 SL(; R) ) 7.1 ([EHW], [Jakobsen], [Parthasarathy]) Gelfand-Kirillov Bernstein non-compact Howe G Lie K G = Sp(n; R) V (gc ;K) Gelfand-Kirillov V 17

18 ( base ) V 0 V K- V U(gC ) U l (gc )=fx U(gC ) j X = X t»l X i1 X it (X ij gc )g V l = U l (gc )V 0 (l 0) V K- gr V = 1M l=0 V l =V l 1 (V 1 = (0)) gr V S(gC )=gru(gc )- h(t) = tx l=0 dim gr l V (t Z 0 ) h(t) t t Hilbert h(t) = b d d! td +(lower terms) (7.1) V 0 Definition 7.1 ([Vogan1]) (7.1) d V Gelfand-Kirillov d = Dim V b d V Bernstein Deg V Remark. Gelfand-Kirillov Dim V Bernstein Deg V Bernstein Gelfand-Kirillov Bernstein ( [, 7.1] ) gr V S(gC )- Ann(gr V ) Ann(gr V )=fx S(gC ) j X gr V = (0)g Definition 7. ([Vogan], [Joseph]) S(gC ) g Λ C g Λ C Ann(gr V ) (V 0 ) Ass V = ff g Λ C j X(f) =0(8X Ann(gr V ))g V 18

19 g Λ C g C Killing Ass V ρ g C g C s N s s gr V Theorem 7.3 ([Vogan, Th. 8.4]) V (g C ;K)- V I I Ass I (1) g C = k C Φ p C Cartan Ass V N K p C C - () Ass I N p C ff Ass V (3) Ass I G C O O N = p C ra i=1 O i K C Ass V K C fo i (1» i» r)g (4) 1»8i» r dim O = dim O i = Dim V V 9O V ρ N p C : K C - Ass V = O V ( ) O V V K C - [Vogan], [Ohta], [ ] Gelfand-Kirillov [Yamashita] 7. Weil Gelfand-Kirillov Bernstein (?) Weil Weil (g C ;K)- Fock type C [a i j 1» i» n] (L + ) K =( ); (L ) K =( ) (L ± ) K K- L ± Harish-Chandra (g C ;K)- K- (L + ) K;0 = C =( ); (L ) K;0 = V = (L + ) K V 0 p + () V l U(g C ) U(p )=S(p ) p L K nm i=1 C a i V l = U l (g C )V 0 = U l (p )V 0 =(l ) V 19

20 gr l V =(l ) tx tx n +l 1 =) h(t) = gr l V = n 1 l=0 = n 1 t n + O(t n 1 ) n! Dim L + = n; Deg L + = n 1 Dim L =Dim(L + ΦL )= n; Deg(L + Φ L )= n Dim L = n; Deg L = n 1 Ass(L ± ) V = (L + ) K V 0 = ( ) gr V S(g C ) p + k C gr V l V l p + k C g C V l V l+1 gr V mod V l p + k C Ass V U(p )=S(p ) p x4 S(p ) ' C [Sym(n)] Q Λ (k =1) Ann(gr V )=S(g C )p + + S(g C )k C l=0 +ker(q : C n 3 x 7! x t x Sym(n)) Λ ker Q Λ 1 1 K C i 1 0 n 1 0 n 1 1 i 0 n 1 0 n p+ K C (Killing (p ) Λ = p + ) L + Exercise 7.4 (1) (5.1) ρ» ia A p ± = A ±ia fi t A = Aff () c Sp(n; C ) (Cayley )» c = p 1 1n i1 n i1 n 1 n p + =Adc ρ» ff 0n A 0 n 0 n fi t A = A ; p =Adc 0 ρ» ff 0n 0 n A 0 n fi t A = A

21 L Ann(gr (L ) K )=S(g C )p + + S(g C )k C + Ann(gr V ) U(p ) Ann(gr V ) U(p ) p Ann(gr (L ) K ) = Ann(gr (L + ) K ) k1 L( k 1) Theorem 4. L( k 1) lowest K-type Theorem 4.3 L( k1) ' U ) fi ( k 1) Ω C [M(n; k; C )]O(k;C = M `(μ)»minfn;kg U fi ( k 1+μ) K- k n Gelfand-Kirillov Bernstein k = n k» n V = L( k1) K V V 0 = U fi ( k 1) =( ) V t = U t (g C )V 0 = M `(μ)»minfn;kg;jμj»t U fi ( k 1+μ) (jμj = μ μ k ) dim U fi ( k 1+μ) = dim U fi (μ) dim V t = X `(μ)»minfn;kg;jμj»t dim U fi (μ) Weyl dim U fi (μ) = Q Q 1»i<j»n (μ 1»i<j»n i μ j + j i) (j i) = Q nk k(k+1)= k l=1 (n l)! Y 1»i<j»k (μ i μ j ) ψ Y 1»i»k μ i! n k +(μ ) 16 Ann(L )K = Ann(L + )K 1

22 μ i =0(k <i» n) Q k l=1 dim V t = nk k(k+1)= (n l)! Z 1 x 1 x x k 0; 1 x 1 + +x k 0 Y (x i x j ) ψ Y 1»i<j»k 1»i»k! n k x i dx 1 dx k t k(k 1)=+k(n k)+k +(t ) k(k 1) Dim L( k 1)=k(k 1)=+k(n k)+k = nk Deg L( k nk k(k+1)= (nk k(k 1) +1) 1) = (k +1) (n l +1) ZΩk Y 1»i<j»k Q k l=1 jx i x j j (x 1 x x k ) n k dx 1 dx k (7.) Ω k = f(x 1 ; ;x k ) [0; 1] k j x x k» 1g (7.3) Z[0;1]k Y 1»i<j»k jx i x j j (x 1 x x k ) n k dx 1 dx k Selberg [ -, ] Exercise 7.5 k = Deg L(1) = 1 n n 1? Bernstein Gelfand- Kirillov fi = fi(d) Theorem 4.1 Dim L( k1 + fi) = Dim L( k(k 1) k 1)=nk

23 Theorem 7.6 (1) 1» k» n fi = fi(d) Theorem 4.1 k(k 1) Dim L( k 1 + fi) =nk fi =0 Deg L( k 1) (7.) () k n Gelfand-Kirillov Bernstein Dim L( k +1) 1 + fi) =n(n ; Deg L( k 1 + fi) =dimu fi Deg L( k 1 + fi) n<k» n fi =017 Gelfand-Kirillov Bernstein Proof. () Deg L () K L( k1 + fi) ' U Ω k 1+fi U(p ) U(p ) n(n +1)= Bernstein dim U =dimu k 1+fi fi Bernstein Theorem 7.6 () Corollary 7.7 Ω n (7.3) n ZΩn Y 1»i<j»n Q n l=0 (l +1) jx i x j jdx 1 dx n = n(n 1)= n(n+1) +1 L( k 1 + fi) k» n L( k1) V = L( k1) K Weil Ann(gr V )=S(g C )p + + S(g C )k C +ker(q : M(n; k; C ) 3 x 7! x t x Sym(n)) Λ Im Q = fx Sym(n) j rank X» kg Ass V = fx p + j rank X» kg = O k ; O k = AdK C 6 4 i1 k 1 k 0 n k 0 n k 1 k i1 k 0 n k 0 n k ρ p+ (7.4) V = L( k1 + fi) K Weil p + ; k C ρ Ann(gr V ) U(p ) Ann(gr V ) 17 n<k» n 3

24 p U(p ) Ann(gr V ) ( gr V ) Ann(gr L( k 1 + fi) K) = Ann(gr L( k 1) K); =) Ass L( k 1 + fi) =AssL( k 1) K = O k Ann L( k 1 + fi) K = Ann L( k 1) K ([, 1.5.5] ) Theorem 7.8 (1) 1» k» n fi = fi(d) Theorem 4.1 Ass L( k 1 + fi) =O k K C - O k (7.4) () k n Ass L( k 1 + fi) =O n = p + Corollary 7.9 (1) 1» k» n fi = fi(d) Theorem 4.1 L( k 1 + fi) AdG C 6 4 i1 k 1 k 0 n k 0 n k 1 k i1 k 0 n k 0 n k =AdG C 4 0 n 1 k 0 n k 0 n 0 n () k n L( k 1 + fi) AdG C (p + ) Theorem 7.3 ([Yamashita, Th. 3.] ) [Kobayashi, Theorems 3.1 & 3.7] dual pair Gelfand- Kirillov dim Ass V = Dim V Ass V ρ p + p + K C - p + = `n O k=0 k Ass V Exercise 7.10 dim O k 3 5 4

25 [Howe3] (rank) Ass V = O k Rank V = k () Weil tensor Ass V (wave front set) G- (cf. Exercise 3.6) ([Sekiguchi]) Ass V References [Adams] J. Adamas, Unitary highest weight modules, Adv. in Math., 63(1987), [ - ] /,,,, [EHW] T. Enright, R. Howe and N. Wallach, A classification of unitary highest weight modules, in Representation theory of reductive groups, Progress in Math. 40, Birkhäuser, 1983, pp [Fulton-Harris] W. Fulton and J. Harris, Representation Theory A First Course, GTM (RIM) 19, Springer-Verlag, [Hecht-Schmid] H. Hecht and W. Schmid, A proof of Blattner's conjecture, Invent. Math., 31(1975), [Helgason] S. Helgason, Groups and Geometric Analysis, Academic Press, [ ],,, [Howe1] R. Howe, On some results of Strichartz and of Rallis and Schiffman ( ), J. Funct. Anal., 3(1979), [Howe] R. Howe, Dual pairs in physics: Harmonic oscillators, photons, electrons, and singletons, in Applications of Group Theory in Physics and Mathematical Physics, Lectures in Applied Mathematics vol. 1, AMS, 1985, pp [Howe3] R. Howe, Small unitary representations of classical groups, in Group representations, ergodic theory, operator algebras, and mathematical physics, MSRI Publications vol. 6, Springer-Verlag, 1987, pp [Howe4] R. Howe, Remarks on classical invariant theory, Trans. AMS, 313(1989), [Howe5] R. Howe, Transcending classical invariant theory, Journ. AMS, (1989),

26 [Howe6] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity free actions and beyond, in The Schur Lectures (199), Israel Mathematical Conference Proceedings 8, Bar-Ilan Univ., 1995, pp [Howe-Tan] R. Howe and E. C. Tan, Non-Abelian Harmonic Analysis, Applications of SL(; R), Universitext, Springer-Verlag, 199. [Humphreys] J. E. Humphreys, Introduction to Lie algebras and representation theory, GTM 9, Springer-Verlag, 197. [ ],,,. [Jakobsen] H. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules, J. Func. Anal., 5(1983), [Joseph] A. Joseph, On the associated variety of a primitive ideal, J. Alg., 93(1985), [Kashiwara-Vergne] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math., 44(1978), [Knapp] A. W. Knapp, Representation theory of semisimple Lie group An overview based on examples, Princeton Univ. Press, [Knapp-Vogan] A. W. Knapp and D. A. Vogan, Jr., Cohomological Induction and Unitary Representations, Princeton Univ. Press, [Kobayashi] T. Kobayashi, Discrete decomposability of the restriction of A q ( ) with respect to reductive subgroups III, preprint [Macdonald] I. Macdonald, Symmetric functions and Hall polynomials. Clarendon Press, [ ], Enveloping algebra, 11, [ 1], /L'estro armonico, , [ ], Discrete Series, 615 I (1987.3), [Ohta] T. Ohta, Associated varieties of standard representations for real reductive groups and induction of nilpotent orbits, preprint [Parthasarathy] R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci., 89(1980), 1 4. [Schmid] W. Schmid, On the characters of discrete series (the Hermitian symmetric case), Invent. Math., 30(1975),

27 [Sekiguchi] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan, 39(1987), [ ],,, 199. [Varadarajan] V. S. Varadarajan, Infinitesimal theory of representations of semisimple groups, in Harmonic analysis and representations of semisimple Lie groups, edited by J. A. Wolf et al., Reidel, 1980, pp [Vogan1] D. A. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math., 48(1978), [Vogan] D. A. Vogan, Associated varieties and unipotent representations, in Harmonic analysis on reductive groups, edited by W. Barker and P. Sally, Birkhäuser, 1991, pp [Wallach] N. R. Wallach, Real reductive groups I, Pure and Appl. Math. 13, Academic Press, [Yamashita] H. Yamashita, Associated varieties and Gelfand-Kirillov dimensions for the discrete series of a semisimple Lie group, preprint [ Ver. 1.0 [00/11/5 10:9], originally dated 1996/1/4. This file is compiled on November 5,

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r 1960 70 Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta theta ( ) Λ ( ) August 9, 2000 Theta lifting of representations

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad 1. GL(n GL(n Lie GL(n, C Lie 1 Lie G = GL(n, R GL(n, C G G X M(n, C ϕ(x d dt ϕ(xetx t=0 = d dt ϕ(x + txx t=0 M(n, C C (i, j 1 0 E ij ( n ν, µ=1 x νµe νµ E ij = n ν=1 x νie νj (1.1 E ij = Lie n x νi x ν=1

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

Bruhat

Bruhat SGC - 77 Bruhat ([22]) 3 3.11 2010 4 ii 1 1 1.1... 1 1.2... 5 1.3... 8 1.4 1... 11 1.5 2... 14 2 18 2.1... 18 2.2... 25 2.3... 30 3 36 3.1... 36 3.2... 42 3.3... 49 3.3.1... 49 3.3.2... 50 3.3.3... 52

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

III Borel-Weil L n L m

III Borel-Weil L n L m 2000 ( 1) ( ) 2000/11/20 11/24 Ver. 1.0 [00/11/24 23:40] Contents I 5 1 5 II 9 2 9 3 12 4 15 5 19 6 Frobenius 23 7 26 8 29 9 Hecke 32 10 33 1 III 36 11 36 12 39 13 Borel-Weil 45 14 47 14.1 L n L m......................................

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

SO(n) [8] SU(2)

SO(n) [8] SU(2) SO(n) [8] 1 2 1.1.............................. 3 1.2.............................. 6 1.3 SU(2)............................. 7 1.4 -...................... 10 1.5 SO(3).............................. 11

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

コホモロジー的AGT対応とK群類似

コホモロジー的AGT対応とK群類似 AGT K ( ) Encounter with Mathematics October 29, 2016 AGT L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), arxiv:0906.3219.

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

MAIN.dvi

MAIN.dvi 01UM1301 1 3 1.1 : : : : : : : : : : : : : : : : : : : : : : 3 1.2 : : : : : : : : : : : : : : : : : : : : 4 1.3 : : : : : : : : : : : : : : : : : 6 1.4 : : : : : : : : : : : : : : : 10 1.5 : : : : : :

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) 20 10 29 Recently, there are several successful attempts on the classification of

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information