Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

Similar documents
MD ,RM ,VT Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Tosh

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

鉄鋼協会プレゼン

Table : Vehicle specifications. m 87 [kg] l.7 [m] l f.999 [m] l.7 [m] (d f ).3 [m] (d ).3 [m] (J f ).24 [kg m 2 ] (J ).26 [kg m 2 ] ().32 [m] (h g ).5

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive


F yr F yf l r γ r γ β l f γ δ f Y X Fig.3 Bicycle model of vehicle dynamics. Table. ehicle specification. ehicle mass M 854 kg Wheelbase l.7 m Distanc

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

CT Study of Minimum Collision Avoidance Distance for Electric Vehicles with Four Wheel Independent Driving and Active Front and Rear Steering D

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

SICE東北支部研究集会資料(2012年)

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

. - INSANANEOUS SPEED OBSERVER Since extremely low-reolution rotary encoder are intalled in railway vehicle, the interval between two conecutive pule

.I.v e pmd

2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Kat

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

(2-3)CyberSpace

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

The University of Tokyo, Institute of Industrial Science (Information & System Division, Electrical Control System Engeneering) Ce-501, Komaba,

JFE.dvi

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

Manoeuvring Performance of the Fishing Boat Modified by a Bulge by Yasuo Yoshimura, Member Shiro Suzuki Ning Ma, Member Yoshiyuki Kajiwara Summary Fis

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

58 10

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter


電子部品はんだ接合部の熱疲労寿命解析

, Evaluation of Certificate Verification Methods in Mobile Environment Katsuyuki UMEZAWA,, Mitsuhiro OIKAWA, Seiichi SUSAKI, Satoru TEZUKA, and Shigei

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *


Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

K02LE indd

2 ( ) i

1 P2 P P3P4 P5P8 P9P10 P11 P12

公益社団法人日本都市計画学会都市計画論文集 Vol.53 No 年 10 月 Journal of the City Planning Institute of Japan, Vol.53 No.3, October, 2018 A queueing model for goods d

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

MEC NC High frequency variation speed control of spindle motor for self-excited chattering vibration suppression in NC Machine tools. Teruaki I


Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

A c b c c c ] := A cp b cp c c b cp A c c cp (9) (8) T u { xk ] = Asxk] b suk] yk] = c s xk] 3 () Moving ifference long sampling observer: N uk N] xk]

SPC PWM IPM Proposal of Control Method for IPM Motor Based on PWM Hold Model in Overmodulation Range Takayuki Miyajima, Hiroshi Fujimoto (Yokoha

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

プラズマ核融合学会誌11月【81‐11】/小特集5

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

原稿.indd

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

光学

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

01 23A1-W-0012.indd

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

AD

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

学内ネットワークの構築とその運用

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

p.3 BRICs p.11

I II III IV V

n-jas09.dvi

XFEL/SPring-8


IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

no15

JIS Z803: (substitution method) 3 LCR LCR GPIB

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

3B11.dvi

. Fig. AC bus k k V I S Fig. 4. Fig. 3. The position of two lines The equivalent circuit model of line impedance Z(k) = V I S () Fig f [Hz], c[m

28

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

LM150/LM350A/LM350 3A 可変型レギュレータ

WT3000 プレシジョンパワーアナライザ ユーザーズマニュアル

29 Short-time prediction of time series data for binary option trade

IPSJ SIG Technical Report Vol.2009-MUS-80 No /5/22 1 CGM Proposal and Discussion of a Nage-sen System for Collaboration of Musical Tracks in Vi

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

10:30 12:00 P.G. vs vs vs 2

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

J. Jpn. Inst. Light Met. 65(6): (2015)

( ) : 1997


特-3.indd

AD8212: 高電圧の電流シャント・モニタ

On model selection problems in terms of prediction mean squared error and interpretaion of AIC (slides)

Direct Motor Drive Lead Screws / Resin Lead Screw type RM / RM RM Resin Lead Screw type RM / Resin MoBo 2 MRH 2 Features A 2-phase Stepping Motor is m

Transcription:

Propoal of Control Method for Electric ehicle with In-Wheel Motor Maataka Yohimura (Yokohama National Univerity) Hirohi Fujimoto (The Univerity of Tokyo) Abtract The anti-lip control or the lip ratio control of E can improve the tability of vehicle in low µ road. However, thee control method cannot control the driving torque. Then in thi paper we propoe the driving method for E with in-wheel motor. By uing thi method, we can control the driving torque directly. Simulation and experiment are carried out to demontrate the effectivene of the propoed method. (electric vehicle driving lip ratio driving torque oberver ). () () () (6) µ (7) M Fig.. J Fd T r Single wheel model. Fd Fig.. M Fd Two wheel model. µ µ. () () J = T rf d () M = F d () [rad/]: [m/]: T [Nm]: F d [N]: M[kg]: r[m]: J[Nm ]: () M M () M = M () λ = r () λ = max(,, ε) () ε

D (5) D = F d λ (5) µ λ Magic Formula (8) F d µ N = Mg/(g: ) (6) (7) F d = µn (6) T d = rf d (7). µ λ µ λ peak p λ peak n λ peak n λ λ peak p λ µ λ µ λ peak n λ λ peak p µ (6) (8) ( ) ( < ) { λ = ( ) ( < ) (8) (9) k k = (9) λ k () λ = λ k λ k k λ k { ( λ ) k = λ ( < ) () D () T d = rd λ () k λ () I friction coefficient µ λpeak_n λ peak_p.8.6...6.8 Fig.. 5.5.5 5 µ λ Typical µ λ curve..8.85.9.95.5..5. k (= /) λ k Fig.. elationhip between λ and k. Fig. 5. initial value= 5 k * T* Wheel peed Oberver.5 ehicle Driving ytem. k k () = k () 5 k k max k min k k min k k max k max λ max λ min λ rd kmin < λmax <, < λmin < k max >, < k min < k k = (λ = ) () () ( = ) = = k () k min k k max (k min λ kmax k max ) ()

σ < σ = σ = (5) kσ * σ K = { k ( σ) kσ ( < σ) (5) < σ (6) k minσ k maxσ (6) < σ (k min k max ) k (7) (8) K (9) K K < σ Kσ = = = K = k (7) K min K K max (K min λ Kmax K max ) (8) = { K ( σ) Kσ ( < σ) (9) < σ () K min σ K max σ () Fig. 7. -ρ 7 initial value= 6 Kσ Fig. 6. ange of. K * T* Wheel peed Oberver t ehicle λ rd Driving ytem conidering tarting. K * T* Wheel peed ρ * initial value= -ρ ρ Fig. 8. 8 uppreion. * ight eft initial value= K * Oberver Wheel peed Oberver T* ehicle λ λ rd rd Driving ytem with yaw-moment K min < < σ ( K min K max ) (5) (9) 6 K 7 7 K max K min K K min K K max K max K min λ max λ min < λ max <, < λ min < K max >, < K min < K K = (λ = ) µ µ 5 K = K max µ µ () () T d T ˆ d, Tˆ d ρ( ρ ) = ρ T ˆ d ( ρ) () = ρ T ˆ d ( ρ) () µ ρ 8 5 () 9

T 9 Fig. 9. PF J Jn Driving torque oberver. * * T* CPI r r J Fig.. initial value= Fig.. 6 Wheel peed control ytem. K λ* * T* Wheel peed τ ehicle Effect of driving torque oberver. λ rd () T T d () = J T () C P I () PI 7 K I K τ τ PF () T d = rd rdk I τ rdk I τ τ () (5) ± rdk τ τ p, p = I τ (5) D D max D min K I. D ehicle ver. (9) µ λ λ = µ λ = µ [rad/] [m] K I =.5 D max = D min = (5) e(p ),e(p ) = 6.7[rad/] λ max =, λ min = K max = 5, K min = σ σ =.5[m/] µ (a) (b) K (c) (d) µ t = [] µ t = 5.5[] µ µ µ ρ ρ =.5 (a) (b) (i) µ µ µ (c) (i) µ K K max = 5 µ ρ =.5 µ µ ρ 5. FPE- Kanon

5 5 etimated driving force hat [Nm] 5 5 K,K 5 5.5.5 5 5 K K.8.6.....6.8 vehicle velocity [m/].5.5.5.5 time [] (a) Etimated driving torque. 5 5 time [] (b) K. Fig.. 5 5 time [] (c) Slip ratio. µ Simulation reult high-µ road. 5 5 time [] (d) ehicle velocity. etimated driving force hat [Nm] 8 6 8 6.9.8.7.6.5.. etimated driving force hat [Nm] 8 6 8 6 K,K 5 5.5.5 5 5 K K.9.8.7.6.5.. 5 6 7 8 time [] 5 6 7 8 time [] 5 6 7 8 time [] 5 6 7 8 time [] 5 6 7 8 time [] (a) Etimated driving torque: Torque (b) Slip ratio: Torque (c) Etimated driving torque: Driving torque (d) K: Driving torque (e) Slip ratio: torque Driving etimated driving force hat [Nm] 8 6 8 6 K,K 5 5.5.5 5 5 K K.9.8.7.6.5.. yaw rate [rad/]......5.6.7 driving uppreion vehicle velocity [m/] 6 5 driving uppreion 5 6 7 8 time [] (f) Etimated driving torque: uppreion. 5 6 7 8 time [] (g) K: uppreion. Fig.. 5 6 7 8 time [] (h) Slip ratio: with yaw moment uppreion..8 5 6 7 8 time [] (i) Yaw rate. µ µ Simulation reult low-µ road plit-µ road. 5 6 7 8 time [] (j) ehicle velocity. Table. Parameter of experimental vehicle. Wheel Inertia J. Nm Wheel adiu r. m ehicle Ma M 85 kg Tread l p. m ehicle Inertia I 6 Nm σ σ =.[m/] µ K [m/] [m/] [m/] µ t = [] µ t = 5.5[] µ µ µ 5 µ µ µ µ µ 6.

5 5 etimated driving torque hat [Nm] 5 5 K,K 5 5.5.5 5 5 K K... vehicle velocity [m/] 6 5 time [] 5 5 time []. 5 5 time [] 5 5 time [] (a) Etimated driving torque. (b) K. (c) Slip ratio. µ Fig.. Experimental reult high-µ road. (d) ehicle velocity. etimated driving torque hat [Nm] 8 6 8 6.9.8.7.6.5.. etimated driving torque hat [Nm] 8 6 8 6 K,K 5 5.5.5 5 5 K K.9.8.7.6.5.. 5 6 time [] 5 6 time [] 5 6 time [] 5 6 time [] 5 6 time [] (a) Etimated driving torque: Torque (b) Slip ratio: Torque (c) Etimated driving torque: Driving torque (d) K: Driving torque (e) Slip ratio: torque Driving etimated driving torque hat [Nm] 8 6 8 6 K,K 5 5.5.5 5 5 K K.9.8.7.6.5.. yaw rate [rad/].5.5 5 5. driving uppreion vehicle velocity [m/] 5 driving DTC uppreion 5 6 time [] (f) Etimated driving torque: uppreion. 5 6 time [] (g) K: uppreion. Fig. 5. 5 5 6 time [] (h) Slip ratio: with yaw moment uppreion. µ µ 5 6 time [] (i) Yaw rate. Experimental reult low-µ road plit-µ road. 5 6 time [] (j) ehicle velocity. NEDO ( ID: 5A87d) A Nagae K Hoomi S Yamamoto M Ooba Y Takahira T Ihikawa: Development of Active-Traction Control Sytem TOYOTA Technical eview ol 5 No pp 68-7 (in Japanee) Y Turuoka Y Toyoda and Y Hori: Baic Study on Traction Control of Electric ehicle Tran IEE of Japan ol 8-D No pp -5 998 (in Japanee) H Sado S Sakai and Y Hori: oad Condition Etimation for Traction Control in Electric ehicle In Proc 999 IEEE International Sympoium on Indutrial Electronic pp 97-978 999 K Fujii H Fujimoto: Slip atio Control Baed on Wheel Speed Control without Detection ehicle Speed for Electric ehicle T-7-5 pp 7-7 (in Japanee) 5 K Nakamura H Fujimoto: Propoal of Slip atio Control for Electric ehicle with Inverter Control Baed on PWM Hold IIC-8-6, pp 75-8, 8 (in Japanee) 6 M Yohimura H Fujimoto: Slip atio Control of Electric ehicle with Singlerate PWM Conidering Driving Force in Proc. Proc. The th IEEE International Workhop on Advanced Motion Control pp 78-7 7 K Kanou H Fujimoto: Yaw-rate Control Baed on Slip-ratio Control with Driving Stiffne Identification for Electric ehicle CCS SY//8/-6 8(in Japanee) 8 H B Pacejka and E.Bakker The Magic Formula Tyre Model Tyre model for vehicle dynamic analyi:proceeding of the t International Colloquium on Tyre Model for ehicle Dynamic Analyi held in Delft The Netherland 99 9 S. Sakai: D-Tire Model ver. http://akai.nnl.i a.ac.jp/index j.html,.