nakata/nakata.html p.1/20

Similar documents
ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

パーキンソン病治療ガイドライン2002

研修コーナー

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

応力とひずみ.ppt

untitled

6.1 (P (P (P (P (P (P (, P (, P.

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

6.1 (P (P (P (P (P (P (, P (, P.101

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

n ( (

第90回日本感染症学会学術講演会抄録(I)

第86回日本感染症学会総会学術集会後抄録(I)

Ł\”ƒ-2005

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

A

v er.1/ c /(21)


直交座標系の回転


A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

( ) () () ( ) () () () ()

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

Gmech08.dvi

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

数値計算:有限要素法

x ( ) x dx = ax

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Part () () Γ Part ,

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

DVIOUT

1

応用数学III-4.ppt

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

A

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,


II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

, = = 7 6 = 42, =

min. z = 602.5x x 2 + 2

第1章 微分方程式と近似解法

Chap11.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


DVIOUT-HYOU

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

ユニセフ表紙_CS6_三.indd

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


入試の軌跡

73

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

tnbp59-21_Web:P2/ky132379509610002944

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

DE-resume

all.dvi

pdf


st.dvi


i

日本内科学会雑誌第97巻第7号

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


meiji_resume_1.PDF


A



3/4/8:9 { } { } β β β α β α β β

gr09.dvi

…p…^†[…fiflF”¯ Pattern Recognition


日本内科学会雑誌第98巻第4号

抄録/抄録1    (1)V

2011de.dvi

( ) ? () 1.1 ( 3 ) j x j 10 j 1 10 j = 1,..., 10 x 1 + x x 10 =

Transcription:

http://www.me.titech.ac.jp/ nakata/nakata.html p.1/20

1-(a). Faybusovich(1997) Linear systems in Jordan algebras and primal-dual interior-point algorithms,, Euclid Jordan p.2/20

Euclid Jordan V Euclid Jordan : V 2 V x, y V, α, β R x y = y x (αx 1 + βx 2 ) y = αx 1 y + βx 2 y x ((x x) y) = (x x) (x y) x x + y y = 0 = x = y = 0 p.3/20

Euclid Jordan V Euclid Jordan : V 2 V x, y V, α, β R x y = y x (αx 1 + βx 2 ) y = αx 1 y + βx 2 y x ((x x) y) = (x x) (x y) x x + y y = 0 = x = y = 0 (LP) V = R n, 0 B @ x 1 x 2. x n 1 0 y 1 y n 1 y 2 C B A @. C A 0 1 x 1 y 1 x 2 y 2 B @. C A x n y n p.3/20

Euclid Jordan V Euclid Jordan : V 2 V x, y V, α, β R x y = y x (αx 1 + βx 2 ) y = αx 1 y + βx 2 y x ((x x) y) = (x x) (x y) x x + y y = 0 = x = y = 0 (SOCP) ( 0 1 V = R n @ x ) 0 A x 1 x0 R, x 1 R n 1 0 1 0 1 0 1 @ x 0 A @ y 0 A x 1 y 1 @ x 0y 0 + x T 1 y 1 x 0 y 1 + y 0 x 1 A p.3/20

Euclid Jordan V Euclid Jordan : V 2 V x, y V, α, β R x y = y x (αx 1 + βx 2 ) y = αx 1 y + βx 2 y x ((x x) y) = (x x) (x y) x x + y y = 0 = x = y = 0 (SDP) V = S n {X R n n X = X T }, X Y (XY + Y X)/2 p.3/20

e x e = x, e y = y x 1 x x 1 = x 1 x = e x α x β = x α+β x = r λ k c k k=1 c 2 k = c k, c i c j = 0, x, y r λ k (x y) k=1 r k=1 c k = e p.4/20

K {x 2 V x V } K {x V y K, x, y 0} = K x K λ(x) 0 x, y K, x, y = 0 x y = 0 x y K x K y x, y int(k), g GL(V ), gk = K, gx = y p.5/20

maximize c, x minimize b, y subject to Ax = b, subject to z = A y c, x K 0. z K 0. x V, y R m, z V c V, b R m A : V R m A : R m V K: A Ax, y = x, A y p.6/20

maximize c, x minimize b, y subject to Ax = b, subject to z = A y c, x K 0. z K 0. x V, y R m, z V V K LP R n {(x 1, x 2,, x n ) T R n x i 0} SOCP R n {(x 0, x 1 ) T R n x 0 x 1 } SDP S n {X S n X } p.6/20

Ax = b z = A y c x z = 0 x, z K 0 p.7/20

Ax = b z = A y c x z = 0 x, z K 0 (x, y, z) z = A y c Ax = b V R m V x z = µe, µ > 0 x, z K 0 µ 0 p.7/20

1-(b). p.8/20

1-(b). p.8/20

1-(b). p.8/20

1-(b). p.8/20

1-(b). p.8/20

1-(b). p.8/20

1-(b). p.8/20

1-(b). p.8/20

1-(b). p.8/20

Euclid Jordan L x L y x y = L x y = L y x d dx x y = d dx L yx = L y P x 2L 2 x L x 2 Q x,y L x L y + L y L x L x y P 1 x = P x 1 P Px y = P x P y P x (P x y) 1 = P 1 x y 1 Q x 2,y = P x L P 1 x y P x p.9/20

Ax b 0 F (x, y, z) = A y c z = 0 x z µe 0 p.10/20

Ax b 0 F (x, y, z) = A y c z = 0 x z µe 0 Newton (x, y, z), (dx, dy, dz) F (x, y, z)(dx, dy, dz) = F (x, y, z) p.10/20

Ax b 0 F (x, y, z) = A y c z = 0 x z µe 0 Newton (x, y, z), Adx = r p A dy dz = r d L z dx + L x dz = r c (dx, dy, dz) b Ax c A y + z µe x z p.10/20

Newton Adx = r p A dy dz = r d L z dx + L x dz = r c b Ax c A y + z µe x z p.11/20

Newton Adx = r p A dy dz = r d L z dx + L x dz = r c b Ax c A y + z µe x z 1. B := AL 1 z L x A 2. s := r p + AL 1 z (r c + L x r d ) 3. Bdy = s 4. dz := A dy r d 5. dx := L 1 z (r c L x dz) p.11/20

Newton Adx = r p A dy dz = r d L z dx + L x dz = r c b Ax c A y + z µe x z 1. B := AL 1 z L x A 2. s := r p + AL 1 z (r c + L x r d ) 3. Bdy = s 4. dz := A dy r d 5. dx := L 1 z (r c L x dz) L 1 z p.11/20

Ax b 0 F (x, y, z) = A y c z = 0 x z µe 0 p.12/20

Ax b 0 F (x, y, z) = A y c z = 0 x z µe 0 F g (x, y, z) = Ax b A y c z P g x P 1 g z µe = 0 0 0 P g x = 2g (g x) (g g) x p.12/20

Ax b 0 F (x, y, z) = A y c z = 0 x z µe 0 F g (x, y, z) = Ax b A y c z P g x P 1 g z µe = 0 0 0 F g Newton p.12/20

F Newton Adx = r p A dy dz = r d L z dx + L x dz = r c b Ax c A y + z µe x z p.13/20

F Newton Adx = r p A dy dz = r d L z dx + L x dz = r c b Ax c A y + z µe x z F g Newton Adx = r p b Ax A dy dz = r d c A y + z L P 1 g z P gdx + L Pg xp 1 g dz = r c µe P g x P 1 g z p.13/20

1. B := AP 1 g L 1 Pg 1 2. s := r p + AP 1 g L z P g xp 1 g A L 1 3. Bdy = s 4. dz := A dy r d 5. dx := P 1 g L 1 Pg 1 Pg 1 z (r c + L Pg xp 1 g r d ) (r z c L Pg xp 1 g dz) p.14/20

1. B := AP 1 g L 1 Pg 1 2. s := r p + AP 1 g L z P g xp 1 g A L 1 3. Bdy = s 4. dz := A dy r d 5. dx := P 1 g L 1 Pg 1 Pg 1 z (r c + L Pg xp 1 g r d ) (r z c L Pg xp 1 g dz) L 1 Pg 1 z g K p.14/20

1. B := AP 1 g L 1 Pg 1 2. s := r p + AP 1 g L z P g xp 1 g A L 1 3. Bdy = s 4. dz := A dy r d 5. dx := P 1 g L 1 L 1 Pg 1 z Pg 1 Pg 1 z (r c + L Pg xp 1 g r d ) (r z c L Pg xp 1 g dz) g K HKM g := z 1/2 P 1 g L 1 Pg 1 L z P g xp 1 g NT P 1 g z = P g x P 1 g L 1 Pg 1 L z P g xp 1 g = Q x,z 1 = P 2 g p.14/20

HKM Newton Adx = r p b Ax A dy dz = r d c A y + z P z 1/2dx + P z 1/2Q x,z 1dz = r c µe P z 1/2x 1. B := AQ x,z 1A 2. s := r p + A(P 1 r z 1/2 c + Q x,z 1r d ) 3. Bdy = s 4. dz := A dy r d 5. dx := P 1 r z 1/2 c Q x,z 1dz p.15/20

x + αdx K α x + αdx K P x 1/2(e + αp 1 dx) K x 1/2 e + αp 1 dx K x 1/2 λ k (e + αp 1 dx) 0 x 1/2 1 + αλ k (P 1 dx) 0 x 1/2 λ := λ min (P 1 x 1/2 dx) α = 1 (λ < 0) λ (λ 0) p.16/20

LP R n = {(x i ) x i R (i = 1, 2,, n)} Euclid Jordan (x i ) (y i ) = (x i y i ) e e = (1) x (x i ) 1 = (1/x i ) K = {(x i ) R n x i 0} L x L (xi ) = diag(x i ) P x P (xi ) = diag(x 2 i ) Q x,y Q (xi ),(y i ) = diag(x i y i ) n (x i ) = x k e k x, y k=1 (x i ), (y i ) = x T y p.17/20

SOCP R n = Euclid Jordan e x ( ( x 0 x 1 1 0 ) ) Jx x T Jx { x 0 x 1 ( ) y 0 y 1 x 0 R, x 1 R n 1 = ( x 0 y 0 + x T 1 y 1 x 0 y 1 + y 0 x 1 ) } K = {x x 0 x T 1 x 1 } J = 0 1 @ 1 0T A 0 I p.18/20

SOCP ( ) x 0 x L T 1 x x 1 x 0 I P x 2xx T (x T Jx)J Q x,y xy T + yx T (x T Jy)J x 0 = (x 0 + x T 1 x 1) x 1 1 2 x 1 2 x T 1 x 1 + (x 0 x T 1 x 1) 1 2 x 1 2 x T 1 x 1 x, y 2x T y J = 0 1 @ 1 0T A 0 I p.19/20

SDP S n = {X R n n X = X T } Euclid Jordan X Y = (XY + Y X)/2 e I x X = X 1 K = {X S n X } L x (I X + X I)/2 P x X X Q x,y (X Y + Y X)/2 n X = λ k v k v T k x, y n i,j=1 k=1 X ij Y ij p.20/20