橡実験IIINMR.PDF

Similar documents
LLG-R8.Nisus.pdf

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

0.1 I I : 0.2 I

untitled

Gmech08.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

85 4

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


Report10.dvi

c 2009 i

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

main.dvi


2 0.1 Introduction NMR 70% 1/2

4‐E ) キュリー温度を利用した消磁:熱消磁

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

09_organal2

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

修士論文

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

TOP URL 1

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( ) ( )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Mott散乱によるParity対称性の破れを検証

LD

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

The Physics of Atmospheres CAPTER :

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

untitled

Gmech08.dvi

main.dvi

untitled

untitled

gr09.dvi


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Microsoft Word - 学士論文(表紙).doc

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

本文/目次(裏白)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Z: Q: R: C:

SO(2)

[ ] [ ] [ ] [ ] [ ] [ ] ADC

( ) ,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Untitled

2000年度『数学展望 I』講義録

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Note.tex 2008/09/19( )

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

all.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

keisoku01.dvi

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

総研大恒星進化概要.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

OHO.dvi

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

TOP URL 1

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


スライド タイトルなし

1

Gmech08.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Transcription:

(NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0 µh -1-

µ = 5.05089 10 27 (J/T) 2.79277 2.62835 N µ (J/T) Q 12 C 16 O I = 0? 1-3 3 NMR (I =½) hω ( ) r r E = µ H 2µH γ ( ) µ = γhi z E = hγi I I, I + 1~ + I 1, + I ( 2) z zh 0 1-4 h ω = hγh 0 NMR ( 3) H = ω γ Q 1 H 19 F 1 ( I = + 1 I = 1 ) (Hz) z 2 (K) ev int z 2 1-5 H = hγi I iωt V = hγi h1e x -2- zh 0 z

( h 1 ) 2 ( Iz Iz ) z z 2 W = δ E E I V I Q: I I ± 1 z z Iz Iz I ( = 1 I I ) x 2 + + π h V 1-6 4 H = ω γ H 0 ext H 0 H int H int H ext H + ( K ) ext 0 = H int + H ext = 1 H H H K = H int H ext int ext W. D. Knight NMR Q: ( ) 2 2-1 (SW) Q: H 2-2 (CW, continuous wave) 5 CW -3-

5 NMR = ( ( ) ( ) v H + h cos 0 1 ωt + φ cos ωt + θ dt v = v( H + 0 h1 cosωt ) y A x H 0 H + h cos 0 1 ωt h 1 cosωt cosωt cos(ωt+θ ) LC L A ω Q: 5 θ φ h H 2 O 1 H 2-3 (10 ) xy H 0 (ω ~ Hz) h Q: -4-

6 NMR A B C ( =10m~10sec) ( µsec) 100W E (Signal Generator) 5~50MHz F (Attenuator) 40 ~ 0dB K J H G (LPF) (PSD) J ~ I H L PC ( ) C tune ( ) GP-IB I λ/4 C mactch D C mactch 2-4 NMR Q: ( e αt sinωt ) ( e t 2 α sinωt ) α ( 7) 2-5 NMR FID -5-

7 T t FT ω 2π T t FT ω 6 TA Q: FID ( free induction decay ) FID ( ) 2-6 NMR 6 Q: A~J back to back 0.5V 2-7 ( ~ MH ) ( ~ Hz) 8 DBM (double balance mixer) I In-1 Out=In 1 In 2 In-2 V ~0.5V -6-

Q: 8 DBM (double balanced mixer) In-2 1 1 2-8 (DBM, double balanced mixer) DBM ( FID ) FID ( ) ( ) FID Q: 3 3-1 FID FID ) C match ) C tune ) τ ) h 1 ) ) ) FID FID math averaging -7-

single shot PC C: data>g4062tr [ ] 1 ( ) y [ ] 2 ( ) y [ ] 3 ( ) y [ ] 500 ( ) y [ ] x n x n x 500 PC C: data>graph -n x y i r 1 b 2 a 0 500 * * f 3 0 4 1 g 1[ ] r 1 a 0 500 * * (x 0~500 y ) f 3 0 4 1 x, y ( ) g 1 graph /help[ ] (Windows unix ) 3-2 Q: N -8-

3-3 1 H 19 F FID (Free Induction Decay) FFT fft.exe PC fft A>fft usage:- fft src dest(x xy 0x)(data *)(skip#)(r n)(0 r) (output#) src (source) dest (desitination) x xy 0x x data (2,4,8,16,32,64,128,256,512,1024,2048,4096,8192) skip# r n (reverse normal) 0 r (zerro rare) (zero) (rare) 9 x δ [001] [002] [003] [499] [500] [501][502] [1024] δ x 500 FFT δt 1024 FFT δf = 1 T FFT ( FFT 1 ) 10 NMR f f fsg f NMR f 0 f ( ) -9-

fft test test.f x 1024 0 n 0 512 test 1024 ( ) ( test ) ( ) 512 test.f. 2 ( 500 ) 1024 FFT [ ] [ ] [ ] [ ] x ( ) ^2 PC graph graph -n p s i r 1 b 2 a 0 500 * * f 3 0 4 1 g 1[ ] 3-4 FID f SG f 1 ( x 500 FFT ) 9 NMR f SG -10-

( 10) 3-5 xy 3-6 NMR ( ) Q: ( ) 3-7 1-5 Q: -11-

3-8 saturation-recovery ( ) saturation-recovery TA saturation-recovery ( ) Q: Cu 2+, S 6+, O 2 ( ) 3-9 NQR (~34.2MHz) (~28MHz) NMR NQR(nuclear quadruple resonance) FID 35 Cl (I =3/2, 76%) 2 2 E x ( ) NMR ( ) 37 Cl (I =3/2, 24%) q q = 0.062 0. 079 37 35 37 Cl ) 35 Cl (24%) Q: 35 Cl 1Å 35 Cl -12-

( ) φ q ν( Hz ) = q h x 2 * e x x = 3A cgs(esu) e * = 4.8032 10 10 (esu), h = 6.62608 10 27 (erg sec) 35 24 * Cl q = 0.079 10 e (cm 2 esu) 37 24 * Cl q = 0.062 10 e ( ) Q: FID TA Q: NMR TA (3-335B, 3356, email: gotoo-t@sophia.ac.jp) (2000 TA ) (3-337, 3348) -13-

4 ( ) II CP ( ) II III ( ) NMR NMR A Handbook of Nuclear Magnetic Resonance, 2 nd -ed, Freeman, Longman Experimental Pulse NMR, a Nuts and Bolts Approach, Fukushima Experimental Techniques in Condensed Matter Physics at Low Temperatures (R. C. Richardson) (<1K) -14-