Similar documents
修正基本設計報告書表紙(和文final).PDF

untitled

untitled

untitled

Microsoft Word (直江津)土地利用~貯蔵一覧

砂浜砕波帯における流れと地形変化

Analysis of Hypoxia Dynamics Using Pelagic and Benthic Biogeochemical Model: Focus on the Formation and Release of Hydrogen Sulfide Masayasu IRIE, Shu

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

28 Horizontal angle correction using straight line detection in an equirectangular image

国土技術政策総合研究所 研究資料

倉田.indd

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

tnbp59-21_Web:P2/ky132379509610002944

yasi10.dvi

LAB-S1/LAB-SKY追加・変更マニュアル

土木学会構造工学論文集(2009.3)

橡3章波浪取扱.PDF

土木学会構造工学論文集(2011.3)

2007-Kanai-paper.dvi

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

25 Removal of the fricative sounds that occur in the electronic stethoscope

平成17年度活動報告書


1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

25 D Effects of viewpoints of head mounted wearable 3D display on human task performance

先端社会研究 ★5★号/4.山崎


Z: Q: R: C: sin 6 5 ζ a, b


Note.tex 2008/09/19( )

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

untitled

,,.,.,,.,.,.,.,,.,..,,,, i

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

社会技術論文集

JFE.dvi

24 Depth scaling of binocular stereopsis by observer s own movements

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

LAN LAN LAN LAN LAN LAN,, i

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System


TOP URL 1

0801391,繊維学会ファイバ12月号/報文-01-西川

untitled

27 VR Effects of the position of viewpoint on self body in VR environment

untitled

06_学術_技師の現状および将来需要_武藤様1c.indd

国土技術政策総合研究所 研究資料

, 18, Observation of bedforms in the downstream reach of Rumoi River by using a brief acoustic bathymetric system Ryosuke AKAHORI, Yasuyu

ID POS F


The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

<8B5A8F70985F95B632936EE7B22E696E6464>

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Web Web Web Web Web, i

paper.dvi

untitled

TOP URL 1

<82E682B15F96702E696E6464>

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

SJ-WA35T 2版

橡A PDF

抜刷表紙/芦塚 〃 嶋崎 芦塚

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

LLG-R8.Nisus.pdf

2 1 ( ) 2 ( ) i

28 Docker Design and Implementation of Program Evaluation System Using Docker Virtualized Environment

Vol.1 No Autumn

橡最終原稿.PDF

kiyo5_1-masuzawa.indd

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

untitled

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

16_.....E...._.I.v2006

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

TM


06_学術.indd

( ) ( )

) ,

特-2.indd

PLC HMI High flexibility Simple networking Easy to use 190 HMI 2

Part () () Γ Part ,

MA3-1 30th Fuzzy System Symposium (Kochi, September 1-3, 2014) Analysis of Comfort Given to Human by Using Sound Generation System Based on Netowork o

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

学習内容と日常生活との関連性の研究-第2部-第4章-1

P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33

Transcription:

48 3 (29.9) * ** *** (1975) (28) NOWT-PARIVer5.3 * ** *** 239-826 3-1-1 46-844-542 Fax46-841-3888 e-mail:hirayama@pari.go.jp - 23 -

REPORT OF THE PORT AND AIRPORT RESEARCH INSTITUTE Vol.48, No.3 (Sep.29) Evaluation of Design Wave Condition for Seawall on Coral Reef Calculated in Boussinesq-type Wave Transformation Model Katsuya HIRAYAMA* Kazuto HARUO** Ichiro MIYAZATO*** Synopsis Wave overtopping rate for a designed seawall can be evaluated in the diagrams proposed by Goda (1975) using the equivalent offshore wave height and the water depth in front of the seawall. Moreover, Miyakuni et al. (28) suggested that the wave set-up and the surf-beat should be added to the design water depth for the seawall on a coral reef flat. The evaluation of such a design condition on the surf, however, is much difficult because the wave transformation is complicated in the target area because of wave breaking and run-up on spatial topography in the reef area. In this study, the evaluation of the surf condition is carried out by using the Boussinesq-type wave transformation model developed by Hirayama and Hiraishi (25), which can reproduce wave dissipating, wave set-up and surf-beat generated in wave breaking zone on a complicated coral reef bathymetry. Thus, the design wave height can be directly calculated and the design water level can be evaluated with the calculated wave set-up and surf-beat height. Additionally, the wave overtopping rate on the designed seawall is calculated by using Goda s diagram in order to verify the applicability of this procedure for seawall design in an actual coral reef. Key Words: Boussinesq model, coral reef, overtopping rate, seawall design, wave set-up, surf-beat * Head, Wave Group, Coastal and Ocean Eng. Research Division, Marine Environment and Eng. Dept. ** Researcher, Wave Group, Coastal and Ocean Eng.Research Division, Marine Environment and Eng. Dept. *** Visiting Engineer, Wave Group, Coastal and Ocean Eng. Research Division, Marine Environment and Eng. Dept. 3-1-1 Nagase, Yokosuka, Kanagawa 239-826 Japan Phone+81-46-844-542 Fax+81-46-841-3888 e-mail:hirayama@pari.go.jp - 24 -

23 27 27 28 3 31 32 32 33 38 4 4 43 46 47 47 47 48 49 58-25 -

1991 24,25 NOWT-PARIVer5.3 28 28 CADMAS-SURF NOWT-PARIVer5.3 1977 NOWT-PARIVer5.3 Great Barrier Reef Marine Park, 21-27 -

5m h d h η bar H L1/3 h d =h+η bar +ah L1/3 H L1/3 H L1/3 H L1/3_S h d =h+η bar +ah L1/3_S a h d hη bar αh L1/3 αh L1/3 H L1/3 h d η bar h a=.5 a=.7 a=.5.7 a a H L1/3_I h d =h+η bar +a*bh L1/3_I H L1/3_S = bh L1/3_I 2b=2-28 -

b=2 28 h d = h+η bar +.7H L1/3_S = h+η bar +1.4H L1/3_I a=.7b=2 h d = h+η bar +.5H L1/3_S = h+η bar +1.H L1/3_I a=.5b=2 H K d K r H 28 K s 1974 H 1/3 271975 K sb 26 H =H 1/3 / K sb H 1/3 H hd tanθ H h/h 4. Yes No H =K d K r H Ks 1974 Ksb 1975 H H 1/3 H 2 H1/3/Ks H1/3/Ksb H Yes H H hd tanθ H H1/3/Ks No H 1/3 H H =H 1/3 / K s H Yes H No - 29 -

h d tanθ H h/h 4 K s h/h 4 H 1/3 /H H 1/3 H H H H H 28 H H 1/3 h d tanθ H K s H 1/3 K s H H H H 1984 3 7% 1982 1975 1977 (1975 H 1/3x η barx - 3 -

1992 22 H L1/3 1975 ζ H L1/3 4.4* ζ NOWT-PARIVer5.3 NOWT-PARIVer5.325 (a) Line1; Y=+8m (b)line2; Y=+55m (c)line3; Y=+6m (d)line4; Y=-5m - 31 -

29 3s3s H 1/3 H L1/3 η bar 28 3s 3s H 1/3 H L1/3=H L1/3_I η bar h d= h+η bar + H L1/3*a H = H 1/3 / K s h d 2.5km 2.km 25m 1km NOWPHAS - 32 -

NOWPHAS 2,5m NOWPHAS NOWPHAS1998225 WSW NNW N W NNWWSW6 D.L. H.H.W.L. +3.2 +3.2 +3.1 +3.1 H.W.L. +2.1 +2.1 +1.9 +1.9 L.W.L. ±. ±. +.1 +.1 5-33 -

NOWPHAS NOWPHAS5 NNWNOWPHAS 5 Smax = 5 2 dx=dy=5.m H.H.W.L.=D.L.+3.2m NOWPHAS NOWPHAS H 1/3 [m] T 1/3 [s] Smax [deg.] N 8.7 13.6 16 NNW 8.23 13.3 11 337 NW 9.9 13.8 16 315 WNW 1.42 15.1 6 293 W 9.92 14.5 8 27 WSW 9.34 14.1 9 248-34 -

S(f) [m 2 sec] 18 NNW 16 14 12 1 8 6 4 2..1.2 Frequency(Hz) 29 NNW H 1/3 [m ] T 1/3 [s] Sm ax [deg.] N 8.93 13.2 19 5 NNW 8.24 13.1 13 335 NW 9.48 14.1 14 317 W NW 1.11 14.9 1 31 W 9.48 14.5 11 281 W SW 8.23 14.2 13 26 NE N s Ns512 2 NNW NNW - 35 -

[s] L /2 [m] [m] [m] N 13.66 146 4. 3. 1/1 NNW 13.29 138 35. 35. 1/1 NW 13.94 152 3. 3. 1/1 WNW 14.9 173 3. 3. 1/2 W 14.58 166 4. 4. 1/1 WSW 14.12 156 4. 4. 1/1 [m ] I [m ] J [m ] I J N 5. 374 69 748 138 1/1.1 NNW 5. 33 75 66 141 1/1.1 NW 5. 27 75 54 141 1/1.1 W NW 5. 32 68 64 136 1/2.5 W 5. 44 637 88 1274 1/1.1 W SW 5. 436 576 872 1152 1/1.1 [m] IMAX JMAX IS I I1 IE JS J J1 JE N 5. 842 1464 2+1 2+46 2+799 2+838 2+1 2+41 2+1421 2+146 1,232,688 NNW 5. 754 1494 2+711 2+75 2+1451 2+149 1,126,476 NW 5. 634 1494 2+591 2+63 2+1451 2+149 947,196 WNW 5. 734 1444 2+691 2+73 2+141 2+144 1,59,896 W 5. 92 1358 2+859 2+898 2+1315 2+1354 1,224,916 WSW 5. 966 1236 2+923 2+962 2+1193 2+1232 1,193,976 1m.1.4 21 λ αβdh - 36 -

λ α β d[m] V[m^3] 5.5 21 2.2 2.71 2 32.5 21 2.2 2.32 12.5 2.5 21 2.2 2. 8 16.5 21 2.2 1.85 6.3 12.5.5 21 2.2 1.71 5 5.5 21 2.2 1.26 2 5.575 21 2.2 2.79 21.739 4.575 21 2.2 2.89 17.391 α β 12 1.7 21 2.2-37 -

NOWT-PARI Ver.5.3 Δt 1/4 WNWW Δt 1/8 24P4P271m NNW NNW NNW - 38 -

(a) P33 (b) P44 (c) P16 NNW NNW P33P44P16 P33P44P16 3s H 1/3 η bar H L1/3 WNW - 39 -

H S1/3(m) HL1/3(m) η bar(m) (a) 1.6 1.4 N NNW NW WNW 1.2 W WSW 1..8.6.4.2. (b).8.7.6.5.4.3 N NNW.2 NW WNW.1 W WSW..7.6.5.4.3.2.1. (c) N NNW NW WNW W WSW (d) P4P27 ±5% 2 b b=2 2 b=2-4 -

hd(m) 4.5 h d h+η bar +.5*H L1/3 4. 3.5 3. N NNW 2.5 NW WNW W WSW 2. H '(m) 1..9 h d h+η bar +.5*H L1/3.8.7.6.5.4.3.2.1. N NNW NW WNW W WSW (a) a=.5 (a) a=.5 hd(m) 4.5 h d h+η bar +.7*H L1/3 4. 3.5 3. N NNW 2.5 NW WNW W WSW 2. H '(m) 1..9 h d h+η bar +.7*H L1/3.8.7.6.5.4.3.2.1. N NNW NW WNW W WSW (b) a=.7 (b) a=.7 b=2 a=.5.72 a a=.5.7 P9P15 h (1)(3) aa=.5.7 a=.528.7 1975 a NOWT-PARI Ver5.3 3s 3s H L1/3_I H L1/3_S a=.5 a=.7 7:3-41 -

β 1= β 1> N N ηbar[m], HL1/3 [m] b1.5.6.4.2.2.4.6 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 Point 2 4 6 8 1 12 T L1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] ηbar[m], HL1/3 [m] b1.5 1.4 1.2 1.8.6.4.2.2.4 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 Point 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] η bar[m], HL1/3 [m] b1.5.7.6.5.4.3.2.1.1 NNW 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] η bar[m], HL1/3 [m] b1.5 1.2 1.8.6.4.2.2.4 NNW 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] Point Point NW NW η bar[m], HL1/3 [m] b1.5.8.6.4.2.2.4 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] η bar[m], HL1/3 [m] b1.5 1.6 1.4 1.2 1.8.6.4.2.2.4 4 5 6 7 8 9 1111213141516171819221222324252627 2 4 6 8 1 12 14 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] Point Point η bar[m], HL1/3 [m] b1.5.8.6.4.2.2.4 WNW 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] η bar[m], HL1/3 [m] b1.5 1.5 1.5.5 WNW 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] Point Point η bar[m], HL1/3 [m] b1.5.7.6.5.4.3.2.1.1 W 4 5 6 7 8 9 1111213141516171819221222324252627 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] η bar[m], HL1/3 [m] b1.5 1.4 1.2 1.8.6.4.2.2.4 W 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 1 2 3 4 5 6 7 8 9 1 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] Point Point η bar[m], HL1/3 [m] b1.5.6.5.4.3.2.1.1.2 WSW 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 2 4 6 8 1 12 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] ηbar[m], HL1/3 [m] b1.5 1.2 1.8.6.4.2.2 WSW 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 1 2 3 4 5 6 7 8 9 TL1/3[s] ηbar[m] HL1/3[m] Sqrt(B1) TL1/3[s] Point Point - 42 -

1 β1 = η 1 N 3 N rms i= 1 ( ηi η ) 3 1.2 1. β 1=.5 β 1 a=.5a=.7 NNW η bar (m) ah L1/3 (m) h d (m).8.6.4.2..9.8.7.6.5.4.3.2.1. 4. 3.8 3.6 3.4 3.2 3. 2.8 2.6 2.4 2.2 2. 4 7 1 13 16 19 22 25 (a) (a=.7) (a=.5) 4 7 1 13 16 19 22 25 (a=.7) (a=.5) (b) (a=.7) (a=.5) 4 7 1 13 16 19 22 25 (c) (a=.7) (a=.5) 1.2 1..8 (a=.7) (a=.5) (a=.7) (a=.5) H' (m).6.4.2. 4 7 1 13 16 19 22 25 (m) (d) NNW - 43 -

a 2 35cma 2cm a 6cm H 1/3_x(m) H 1/3_x (m) H 1/3_x (m) H 1/3_x (m) 5. 4. 3. 2. Line1 84 P29 H1/3 H1/3 H1/3 P4 1. P4. -6 4 14 24 34 44 54 64 74 84 94 2.5 2. 1.5 1..5 Line3 984m P31 (a) H1/3 H1/3 H1/3. -6 4 14 24 34 44 3. 2.5 2. 1.5 1..5 (b). -5 5 15 25 35 45 55 65 75 6. 5. 4. 3. 2. 1. Line5 1584m P33 Line7 2184m P35 P46 P1 H1/3 H1/3 H1/3 P44 (c) P16 H1/3 H1/3 H1/3 1 8 6 4 2 2 4 6 8 m 4 35 3 25 2 15 1 5 5 1 m 22 17 12 7 2 3 8 m. -6 4 14 24 34 44 54 64 74 84 94 14 114 124 134 m (d) NNW P22 1 8 6 4 2 2 4 6 8 1-44 -

q(m 3 /m/s) 1.E+ 1.E 3 1.E 6 1.E 9 1.E 12 1.E 15 1.E 18 1.E 21 1.E 24 1.E 27 1.E 3 4 7 1 13 16 19 22 25 a=.5 q=21 4 D.L.+5.m (a) a=.5 q(m 3 /m/s) 1.E+ 1.E 3 1.E 6 1.E 9 1.E 12 1.E 15 1.E 18 1.E 21 1.E 24 1.E 27 1.E 3 4 7 1 13 16 19 22 25 a=.7 q=2 1 4 D.L.+5.m (b) a=.7 NNW q(m 3 /m/s) q(m 3 /m/s) 1.E+ 1.E 3 a=.5 q=2 1 4 1.E 6 1.E 9 1.E 12 1.E 15 1.E 18 1.E 21 N NNW 1.E 24 NW WNW 1.E 27 W WSW 1.E 3 (a) a=.5 1.E+ 1.E 3 a=.7 q=2 1 4 1.E 6 1.E 9 1.E 12 1.E 15 1.E 18 1.E 21 1.E 24 1.E 27 1.E 3 N NNW NW WNW W WSW (b) a=.7-45 -

Line Line Line1357 1 2 Line5NNW Line3 Line1Line7 2cm a a P162.7 5% 21-4 m 3 /m/s P15NW a a=.7 a=.53.4 1-4.23-46 -

- 47 - NOWT-PARIVer5.3 29 1/2 a=.5.7 29421 28 55 pp831-835. 1975 143pp59-16. 1975 144 44p. 1974 21 pp57-63. 1977 No.27832p. 1982 212 pp151-25. 1984 31 pp542-546. 1991 31 pp21-67p. 1992 No.723176p. 21

41pp3-3. 22 No.136 162p 24 51pp11-15. 25 52pp11-15. 26 53pp.76-71 28 55 pp.796-8 29 28 24pp951-955. a b d dt, Δt f h h d H 1/3 H L1/3 H L1/3_I H L1/3_S H K s N s tanθ α β η bar θ λ ζ - 48 -

(a) N (b) NNW (c) NW (d) WNW (e) W (f) WSW NOWT-PARI - 49 -

S(f) [m 2 sec] S(f) [m 2 sec] S(f) [m 2 sec] 18 16 14 12 1 8 6 4 2..1.2 Frequency(Hz) S(f) [m 2 sec] 18 NNW 16 14 12 1 8 6 4 2..1.2 Frequency(Hz) (a)n (b)nnw 18 NW 16 14 12 1 8 6 4 2..1.2 Frequency(Hz) S(f) [m 2 sec] 18 WNW 16 14 12 1 8 6 4 2..1.2 Frequency(Hz) (a)nw (b)wnw 18 W 16 14 12 1 8 6 4 2..1.2 Frequency(Hz) S(f) [m 2 sec] 18 WSW 16 14 12 1 8 6 4 2..1.2 Frequency(Hz) (a)w (b)nsw - 5 -

5. 4. G 2 [m 2 ] 3. 2. 1.. 9 45 45 9 Deg.() (a) N (b) NNW 5. 5. 4. 4. G 2 [m 2 ] 3. 2. G 2 [m 2 ] 3. 2. 1. 1... 9 45 45 9 Deg.() 9 45 45 9 Deg.() (c) NW (d) WNW 5. 5. 4. 4. G 2 [m 2 ] 3. 2. G 2 [m 2 ] 3. 2. 1. 1.. 9 45 45 9 Deg.() (e) W. 9 45 45 9 Deg.() (f) WSW - 51 -

- 52 -

- 53 -

N NNW NW 1-54 -

WNW NW WSW 2-55 -

ap29p33p36 bp4p44p47 NNW 1-56 -

cp4p19p25 NNW 2-57 -

NOWT-PARI Ver5.3 2km4km St.3 St.1St.2St.4St.5 7/158/6 87 7/1622 88 7/2531 12/421 St.4 SW NOWPHAS - 58 -

NOWPHAS 7 7/17 7/19 9s 1.52.5m SWWN 22527 7/17 15: 7/17 18: 7/18 6: 7/18 15: (a) 7 28 7 16 22 7/28 3: 7/28 6: 7/29 13: (b) 8 28 7 25 31 NOWPHAS - 59 -

St.1 St.2 St.3 St.4 St.5 D.L D.L-28.2m D.L-2.3m D.L-28.5m D.L+.4m D.L-4.4m 7/17 15: 7/17 18: 7/18 6: 7/18 15: 7/28 3: 7/28 6: 7/29 13: (a) 7/17 15: 7/17 18: 7/18 6: 7/18 15: 7/28 3: 7/28 6: 7/29 13: (b) St.1St.5 28/7/158/6-6 -

8 7/26 7/28 12s 7/29 11s 1.53.m SWN 225 O 1 K 1 S 2 M 2 D.L. D.L =- 1.346(m)B.1 St.1St.5 D.L. B.1 St.4 1.746m 7/19 14 7/3 12 7/18 15 D.L.+.45m 5cm 7/17 15 7/18 15 7/28 6 7/29 13 St.4 St.4.5s 72 FFT 496 34 St.1St.5 St.1St.3 St.5 St.4 (1) SW St.3 St.3 34 2 3 4 25 3-61 -

NOWT-PARI H 1/3 T 1/3 Smax 28717 216 1.83 8.9 73.69 15: SW 28717 212 2.12 9.6 71 1.71 18: SSW 28718 214 1.94 8.6 7 2. 6: SW 28718 226 1.57 8.6 73.45 15: SW 28728 211 2.47 11.2 67 1.85 3: SSW 28728 211 2.18 1.5 68 1.15 6: SSW 28729 218 1.5 8.6 72.77 13: SW H 1/3 T 1/3 [m] [deg.]n Smax D.L. T 1/3 [s] DT [s] TTIN [s] TDEL [s] TSVE [s] TEND [s] 28.7.17 15: 8.9.2 45..225 225. 495. 28.7.17 18: 9.6.2 45..225 225. 495. 28.7.18 6: 8.6.2 45..225 225. 495. 28.7.18 15: 8.6.2 45..225 225. 495. 28.7.28 3: 11.2.3 6..3 3. 546. 28.7.28 6: 1.5.3 6..3 3. 546. 28.7.29 13: 8.6.2 45..225 225. 495..225.3s 8192 5m 1/81/1 5m 4m 6s 5s f=.2-62 -

(2) St.1St.5 53s.33.2Hz 3s.33Hz 28/7/17 15: - 63 -

.2Hz =5s 53s.33.2Hz 3s.33Hz 28/7/17 18: - 64 -

(a) 17 15 18 15 29 13 53s.33.2Hz 3s.33Hz 28/7/18 6: - 65 -

St.3.8Hz 12.5s St.3 53s.33.2Hz 3s.33Hz 28/7/18 15: - 66 -

St.1 St.2 St.1.8Hz St.4 53s.33.2Hz 3s.33Hz 28/7/28 3: - 67 -

St.5.8.2Hz 512.5s.8 12.5s St.4 53s.33.2Hz 3s.33Hz 28/7/28 6: - 68 -

(b) 17 18 18 6 28 3 53s.33.2Hz 3s.33Hz 28/7/29 13: - 69 -

St.3.8Hz 12.5s St.3 St.2.8Hz St.1 St.4 St.4 St.5.8.2Hz 512.5s.8 12.5s St.4 (c) 28 6 St.3.8Hz 12.5s St.1 St.2.8Hz St.1 St.4 St.5-7 -

.8.2Hz 512.5s.8 12.5s St.4 (3) St.1St.5.2.33Hz= 53s.33Hz = 3s - 71 -

.2Hz = 5s (a) 17 15 18 15 29 13 St.3 St.1St.2-72 -

St.4 St.5 St.3 St.1St.2 3s St.1 St.5 St.4 St.5 (b) 17 18 18 6 28 3 St.3 St.2 St.1 St.4 St.5 St.3 St.1St.2 St.4 St.5 (c) 28 6 St.3 St.2 St.1 St.4 St.5 St.3 St.1St.2 St.4 St.5-73 -

D.L.+3.2m - 74 -