BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

Similar documents
O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

AHPを用いた大相撲の新しい番付編成

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

プログラム

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Part () () Γ Part ,

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

本文/目次(裏白)

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

untitled

TOP URL 1

SO(2)

TOP URL 1

: , 2.0, 3.0, 2.0, (%) ( 2.

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

LLG-R8.Nisus.pdf

201711grade1ouyou.pdf

chap10.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

untitled

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552


70の法則

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

newmain.dvi

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

³ÎΨÏÀ

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

第10章 アイソパラメトリック要素

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


chap9.dvi

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

151021slide.dvi

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

211 ‚æ2fiúŒÚ

抄録/抄録1    (1)V

数学概論I

転位の応力場について

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

研修コーナー

B

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

waseda2010a-jukaiki1-main.dvi

Untitled


パーキンソン病治療ガイドライン2002

構造と連続体の力学基礎

all.dvi

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

量子力学 問題


CVMに基づくNi-Al合金の

st.dvi


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

τ τ

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji


8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

第86回日本感染症学会総会学術集会後抄録(I)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

基礎数学I

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Transcription:

1 / 21

Kruscal V : w i,j R: w i,j = w j,i i j Kruscal (w i,j 0 ) 1 E {{i, j} i, j V, i i} 2 E {} 3 while(e = ϕ) for w i,j {i, j} E 1 E E\{i, j} 2 G = (V, E {i, j}) = E E {i, j} G {i,j} E w i,j 2 / 21

w i,j = I (i, j)( ) i 1 1 2 1 2 3 j 2 3 3 4 4 4 I (i, j) 12 10 8 6 4 2 X (1) X (3) X (2) X (4) X (1) X (3) X (2) X (4) X (1) X (3) X (2) X (4) X (1) X (3) X (2) X (4) 3 / 21

Dendroid G := (V, E) V := {1,, N} Q 1,,N (x (1),, x (N) ) = d i := {j V {i, j} E} {i,j} E P i,j(x (i), x (j) ) i V P i(x (i) ) d i 1 4 / 21

Chow-Liu : P 1,,N Dendroid Q 1,,N Chow-Liu, 1968 w i,j := I (i, j) Kruscal D(P 1,,N Q 1,,N ) P 1,,N (x (1),, x (N) ) log Q 1,,N (x (1),, x (N) ) x (1),,x (N) = H(i) I (i, j) i V {i,j} E 5 / 21

Chow-Liu : {(X (1) i,, X (N) i )} i=1 : iid P 1,,N n {(x (1) i,, x (N) i )} n i=1 I n (i, j): X (i), X (j) ˆP 1,,N : P 1,,N 1 I n (i, j) i, j V (i j) 2 Chow-Liu : D(ˆP 1,,N ˆQ 1,,N ) ˆQ 1,,N 6 / 21

{x (i) k }n k=1 (i), {(x k, x (j) k )}n k=1 R n (i), R n (i, j) A (i) : X (i) α (i) := A (i) c n [x]: {x (i) k }n k=1 x A(i) c n [x, y]: {(x (i) k, x (j) k )}n k=1 (x, y) A(i) A (j) Direchlet(a = 1/2) R n (i) := R n (i, j) := Γ(n + α (i) a)γ(a) α(i) Γ(α (i) a) x A (i) Γ(c n[x] + a) Γ(n + α (i) α (j) a)γ(a) α(i) α (j) Γ(α (i) α (j) a) x A (i) Γ(c n[x, y] + a) 7 / 21

{(x (1) k,, x (N) )} n k=1 L k log R n (i) nh n (i) + α(i) 1 log n 2 log R n (i, j) nh n (i, j) + α(i) α (j) 1 log n 2 log R n (i, j) + logr n (j) n{h n (i, j) H n (j) + α(j) (α (i) 1) 2n = n{h n (i) + α(i) 1 2n L n i V n log n} log n I n (i, j) + (α(j) 1)(α (i) 1) 2n {H n (i) + α(i) 1 2n {i,j} E log n} {I n (i, j) 1 2n (α(i) 1)(α (j) 1) log n} log n} 8 / 21

Chow-Liu : J n (i, j) := I n (i, j) 1 2n (α(i) 1)(α (j) 1) log n J n (i, j) Kruscal (V, E) 1 J n (i, j) i, j V (i j) 2 3 J n (i, j) < 0 Chow-Liu : (Suzuki, 1993) ˆQ 1,,N 9 / 21

i j I n (i, j) α (i) α (j) J n (i, j) 1 2 12 5 2 8 1 3 10 5 3 2 2 3 8 2 3 6 1 4 6 5 4-6 2 4 4 2 4 1 3 4 2 3 4-4 X (1) X (3) X (2) X (4) X (1) X (3) X (2) X (4) X (1) X (3) X (2) X (4) X (1) X (3) X (2) X (4) 10 / 21

(Ω, F): µ, ν: F B: R Borel Radon-Nikodym µ ν (µ << ν) A F ν(a) = 0 = µ(a) = 0 ν σ- Ω = i A i ν(a i ) < A i F, i = 1, 2, f : Ω R F D B {ω Ω X (ω) D} F Radon-Nikodym µ, ν σ µ ν A F µ(a) = F dµ dν := f 0 A fdν 11 / 21

(Ω, F, µ): X : Ω R X F Kullback-Leibler F X (x) = 0 x < 1 1 2 1 x < 0 1 2 + x 0 1 2 g(t)dt 0 x Kullback-Leibler µ ν D(µ ν) := log( dµ dν )dµ 12 / 21

Chow-Liu : D (1),, D (N) B µ i (D (i) ) := µ(x (i) D (i) ) µ ij (D (i), D (j) ) := µ(x (i) D (i), X (j) D (j) ) µ 1,,N (D (1),, D (N) ) := µ(x (i) D (i), i = 1,, N) N µ 1 µ N (D (1),, D (N) ) := µ i (D (i) ) i=1 13 / 21

µ ij µ i µ j I (i, j) := D(µ ij µ i µ j ) dµ i,j (x (i), x (j) ) dν 1,,N (x (1),, x (N) ) = 1 {i,j} E dµ i (x (i) ) d i 1 D(µ 1,,N ν 1,,N ) = D(µ 1,,N µ 1 µ N ) I (i, j) i V {i,j} E 14 / 21

( ) X : A c n [x]: n x n := {x k } n k=1 An x A R n (x n ) := Γ(n + A /2)Γ(1/2) A Γ( A /2) x A Γ(c n[x] + 1/2) H: X iid X P 1 n log Rn (x n ) H (n ) P n (x n ): X n = x n Shannon-McMillan-Breiman X P 1 n log Pn (x n ) H (n ) R X P 1 n log Pn (x n ) R n (x n 0 (n ) ) 15 / 21

( ) X [0, 1) A 0 := {[0, 1)} A 1 = {[0, 1/2), [1/2, 1)} A 2 = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)} A k = {[0, 2 (k 1) ), [2 (k 1), 2 2 (k 1) ),, [(2 k 1 1)2 (k 1), 1)} g (Ryabko, 2009) X f 1 n log f n (x n ) g n (x n 0 (n ) ) 16 / 21

( ) η: σ, µ η Suzuki, 2011 f := dµ dµ dλ dη ( λ η ) D(µ k η) D(µ η) (k ) = 1 n (µ η ) log dµn dν n (x n ) 0 (n ) 17 / 21

Bayes (x n, y n ): (X, Y ) n µ X η X, µ Y η Y dµ n X dηx n (x n ), dµn Y dηy n (y n dµ n XY ), dηx n (x n, y n ) dηn Y dνn X dηx n (x n ), dνn Y dηy n (y n ), dν n XY 2: 1 n log dν n XY dηx n (x n, y n ) dηn Y dνx n dηx n (x n ) dνn Y dηy n (y n ) dηx n (x n, y n ) dηn Y I (X, Y ) (1) 18 / 21

1 (Ω, F) µ(ω) = 1 {µ[m]} m N 1 n log µn [m] ν n [m] (x n ) 0 {ν[m]} m N 2 m N µ[m ] n x n log dνn [m] dη n (x n ) m m log dν[m ] n dη n (x n ) log dν[m]n dη n (x n ) log dν[m ] n dν[m] n (x n ) 0 19 / 21

Chow-Liu : K n (i, j): X (i), X (j) Bayes {(x (1) k,, x (N) k )} n k=1 log dνn i dηi n ({x (i) k }n k=1 ) n K n (i, j) i V {i,j} E 1 K n (i, j) i, j V (i j) 2 3 K n (i, j) < 0 Chow-Liu : ν ν n log dνn dν n (x n ) 0 20 / 21

Bayes Bayes Chow-Liu : 21 / 21