m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Similar documents
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


TOP URL 1


( )

The Physics of Atmospheres CAPTER :

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

TOP URL 1

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

QMI_10.dvi

第3章

all.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

master.dvi


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

pdf

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

量子力学 問題

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

QMII_10.dvi


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y


IA

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


TOP URL 1

LLG-R8.Nisus.pdf

Part () () Γ Part ,

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

I

Untitled

201711grade1ouyou.pdf

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

数学の基礎訓練I

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

all.dvi

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

keisoku01.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

1

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

chap1.dvi

DVIOUT-fujin

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k



1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

QMI_09.dvi

振動と波動

85 4

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

III,..

液晶の物理1:連続体理論(弾性,粘性)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

基礎数学I

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Gmech08.dvi

4‐E ) キュリー温度を利用した消磁:熱消磁

Z: Q: R: C: sin 6 5 ζ a, b

phs.dvi


30


( ) ( )

Transcription:

2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ 0 = 1 + Ne2 m 1 + Ne2 mω 2 j j f j f j ω 2 j ω2 iωγ j 1 + NZe2 mω 2 2.121) 2.6.2 ft) = A sinω 0 t)e γt 1 A 1 38

χω) = dtft)e iωt = 0 { } 1 2 ω + ω 0 + iγ 1 ω ω 0 + iγ = ω 0 A ω + iγ) 2 ω0 2 ω 0 = A ω0 2 ω2 2iγω 2.122) 2.123) γ ω 0 γ 2 2.123 2.119 ω ω 0 2.122 χ ω) = A ω ω 0 2 ω ω 0 ) 2 + γ 2 2.124) χ ω) = A γ 2 ω ω 0 ) 2 + γ 2 2.125) 39

ω 0 ω χ0) = A ω 0 ω0 2 + A γ2 ω 0 2.126) χ ) = 0 2.127) 2.6.3 µ m =< µ > N x E N 1 N 2 m = µ N 1 N 2 N 1 + N 2 2.128) m t = µ N N 1 t N 2 t ) = µ N { P 21N 1 + P 12 N 2 ) P 21 N 1 P 12 N 2 )} = P 21 + P 12 )m P 21 P 12 )µ 2.129) P 21 P 12 P 21 = ω 0 2π e µe)/kt = P 0 e µe kt 2.130) P 12 = P 0 e µe kt 2.131) P 0 := ω 0 2π e kt 2.132) µe kt expµe/kt ) = 1 + µe/kt?? m τ 0 t = m + µ2 E kt 2.133) τ 0 = 1 2P 0 ω x < cos 2 θ >= 1/3 m = µ2 1 E 2.134) 3kT 1 iωτ 0 ϵ ϵ 0 = ϵ 0Nµ 2 3kT 40 1 1 iωτ 0. 2.135)

2.132 ft) e t/τ0 /τ 0 ϵ ω) = ϵ + ϵ s ϵ 1 + ω 2 τ 2 2.136) ϵ ω) = ϵ s ϵ 1 + ω 2 ωτ 2.137) τ 2 2.6.4 2.6.5 ν p = ω/ k = c/n 41

ux, t) = 1 2π Ak)e ik x ωt) d 3 k. 2.138) Ak) k 0 ux, 0) 2 Ak) 2 x k x k 1/2 2.135 k ω k = ñω)ω/c 2.86 Ak) k 0 ux, t) = = = 1 2π 1 2π 1 2π Ak)e ik x ωk)t) d 3 k Ak)e i{k x ω 0+ ωk 0 ) k k k 0 ))t} d 3 k Ak)e ik x ωk 0 ) k t) d 3 k e iω0 ωk 0 ) k k 0)t = ux, 0) e iω 0 ωk 0 ) k k 0 )t 2.139) x = x ω k t Ak) k 0 ω k 0 ω = ω 0 + ωk 0 )/ k k k 0 )) 2.139 ux, t) = ω ux t, 0) k = ux v gt, 0) 2.140) v g := ω, ) 2.141) k 2.138 v g 3 3.1 2.3.2 χω) χt) Ẽω) Pω) 2.3.3 ñ 2 ω) 42

2 Ẽω) + ω2 ñ 2 ω) c 2 Ẽω) = 0 3.1) ñ Ẽω) x e ik x ωt) k 2 = k 2 = ω2 ñ 2 c 2 3.2) ñ k ω E k,ω x, t) = Ẽk, ω)eik x ωt) 3.3) B k,ω x, t) = Bk, ω)e ik x ωt) 3.4) k ω 3.2 k Ek, ω) Bk, ω) k n k = kn ρ = 0 dive = 0 k Ek, ω) = 0 n Ek, ω) = 0 3.5) rote = B/ t ik Ek, ω) = iωbk, ω), Bk, ω) = k n Ek, ω) 3.6) ω 3.6 Ek, ω) Ek, ω) Bk, ω) = 0 3.7) n E B 3.2 : 43

k e 1, e 2 Ex, t) = E 1 e 1 + E 2 e 2 )e ik x ωt) 3.8) E 1 E 2 e 1 e 2 1). E 1 E 2 3.8 E 1 E 2 Ex, t) = E 1 e 1 + E 2 e 2 ) e ik x ωt) 3.9) 2). E 1 E 2 E = E 1 = E 2 arge 1 /E 2 ) = ±π/2 Ex, t) = Ee 1 ± ie 2 )e ik x ωt) 3.10) ReEx, t) = E e 1 cosk x ωt) e 2 sink x ωt) ) 3.11) 3.10 3.11 e + := e 1 + ie 2 3.12) e := e 1 ie 2 3.13) e + e e + e e 1 e 2 e + e Ex, t) = E + e + + E e )e ik x ωt) 3.14) 3). E + E E + E + e + + E e = E + + E )e 1 + ie + E )e 2 3.15) e 1 E + +E e 2 E + E 4). E + E 3.15 44

3.2.1 E x, E y Ex, t) = E x e x + E y e y )e ik x ωt) 3.16) J ) J := E x E y. 3.17) J 1 J 2 = E 1x E2x + E 1y E2y = 0 3.18) J 1 J 2. ) 1 a) J x = : x 0 ) 0 b) J y = : y 1 ) c) J r = 1 1 2 i ) d) J l = 1 1 2 i J x J y J r J l J = α x J x + α y J y = α r J r + α l J l 3.19) J x J y J r J l 3.18 3.2.2 f f : J J f J x, J y ) ) J x J y = T J x J y, T : f ) 3.20) 45

.1 ) ) 1 0 0 0 T x =, T y = 0 0 0 1 3.21) T x T y x y T x J x = J x, T x J y = 0, T x J r = 1 2 J x 3.22).2 wave retarder T Γ = 1 0 0 e iγ T Γ=π/2 1/4 T Γ=π/2 = ) 1 0 0 i ) 3.23) 3.24) 1/4 x 45 ) ) 1 1 T Γ=π/2 2 = 1 1 = J l 3.25) 1 2 i x 45 T Γ ) ) 1 1 T Γ=π/2 T Γ=π/2 2 = 1 1 1 2 1 3.26) x 45 T Γ=π 1/2 ) 1 0 T Γ=π/2 = 0 1 3.27) 1/2 x 45 ) ) 1 1 T Γ=π 2 = 1 1 = J l 3.28) 1 2 1 x 45.3 polarization rotator T θ = cos θ sin θ ) sin θ cos θ 3.29) 46

θ = π/2 x 45 T θ=π/2 ) 1 1 T θ=π/2 2 = 1 1 0 ) ) ) 1 1 = 1 1 0 1 2 1 2 1 3.30) x 45 3.2.3 x, y x, y Rθ) x y ) ) x cos θ = Rθ), Rθ) := y sin θ ) sin θ 3.31) cos θ x x θ J = Rθ)J 3.32) J T J T J out = T J in Rθ)J out = T Rθ)J in J out = Rθ) 1 T Rθ)J in J out = T J in T = Rθ)T Rθ) 1 = Rθ)T R θ) 3.33) x, y) x, y ) T Rθ)T R θ) normal mode T J normal = µj normal. 3.34) 2 2 2 3.21 dimkert ) 0 rankt = 2 47

J J 1 J 2 J = j 1 J 1 + j 2 J 2 T J = j 1 µ 1 J 1 + j 2 µ 2 J 2 3.35) 3.2.4 e 1, e 2 ) e +, e ) E 1 = e 1 E 3.36) E 2 = e 2 E 3.37) E + = e + E 3.38) E = e E 3.39) E 1 = a 1 e iδ 1 3.40) E 2 = a 2 e iδ2 3.41) E + = a + e iδ + 3.42) E = a e iδ 3.43) 3.44) s 0 = a 2 1 + a 2 2, ) 3.45) s 1 = a 2 1 a 2 2, y x 3.46) s 2 = 2a 1 a 2 cosδ 2 δ 1 ), 3.47) s 3 = 2a 1 a 2 sinδ 2 δ 1 ), 3.48) or 3.49) s 0 = a 2 + + a 2, ) 3.50) s 1 = a + a cosδ + δ ), 3.51) s 2 = a + a sinδ + δ ), 3.52) s 3 = a 2 + a 2, ) 3.53) a 1, a 2, δ 2 δ 1 or a +, a, δ + δ s 0 s 3 s 2 0 = s 2 1 + s 2 2 + s 2 3 3.54) 48

s 0 = 1 s 0,s 1,s 2,s 3 < s 2 0 > < s 2 1 > + < s 2 2 > + < s 2 3 > 3.55) < s 1 >=< s 2 >=< s 3 >= 0 3.3 2 n 1 n 2 θ 1 1. Kinetics a) b) n 1 sin θ 1 = n 2 sin θ 2 2. Dynamics E B a) b) 3.3.1 Kinetics x y k x k y k 1 e x = k 1 e x = k 2 e x k 1 sin θ 1 = k 1 sin θ 1 = k 2 sin θ 2. 3.56) k 1 = k 1 = n 1 ω/c k 2 = n 2 ω/c n 1 sin θ 1 = n 1 sin θ = n 2 sin θ 2 3.57) 49

: n 1 A x 1, y 1 n 2 B x 2, y 2 C x 0, 0 T = = n 1 c AC CB + c/n 1 c/n 2 x 1 x 0 ) 2 + y 2 1 + n 2 c x 2 x 0 ) 2 + y 2 1 3.58) T dt/dx 0 = 0 dt = n 1 dx 0 c x 0 x 1 n 2 x1 x 0 ) 2 + y1 2 c x 2 x 0 x2 x 0 ) 2 + y 2 2 = n 1 c sin θ 1 n 2 c sin θ 2 = 0 3.59) n 1 sin θ 1 = n 2 sin θ 2 3.3.2 Dynamics Maxwell E H D B k 1 = k 1 e 1, k 1 = k 1e 1, k 2 = k 2 e 2 e 1 = e 1 = e 2 = 1) { E i = E 0 i eik 1 x ωt) B i = k1 ω 3.60) E0 i eik1 x ωt) { Er = E 0 ik 1 x ωt) re 3.61) B r = k 1 ω E 0 re ik 1 x ωt) { E t = E 0 t e ik 2 x ωt) B t = k2 ω E0 t e ik2 x ωt) 3.62) n i.e. e z D B ϵ 1 E i + E r ) ϵ 2 E t ) n z=0 = 0, 3.63) k 1 E i + k 1 E r k 2 E t ) n z=0 = 0, 3.64) 50

E H E i + E r E t ) n z=0 = 0, 3.65) k 1 E i + k 1 E r k 1 E t ) n z=0 = 0, 3.66) µ 1 = µ 2 = 1 3.63-3.66 x y E i E r E t x, y 3.63-3.66 k i n = k r n = k t n. 3.67) ϵ1 E 0 i + E 0 r) ϵ 2 E 0 ) t n = 0, 3.68) k1 E 0 i + k 1 E 0 r k 2 E 0 ) t n = 0, 3.69) E 0 i + E 0 r E 0 ) t n = 0, 3.70) k1 E 0 i + k 1 E 0 r k 2 E 0 ) t n = 0, 3.71) 3.68-3.71 a). E n s 3.68 3.70 E n E 0 i + E 0 r E 0 t = 0 3.72) 3.71 k 1 n)e 0 i + k 1 n)e 0 r k 2 n)e 0 t = 0 3.73) A B C = BA C) AB C) E n = 0 3.73 k θ n 1 E 0 i E 0 r) cos θ 1 n 2 E 0 t cos θ 2 = 0 3.74) 3.72 3.74 r12 s ts 12 r12 s = E 0 r E 0 = n 1 cos θ 1 n 2 cos θ 2 3.75) i n 1 cos θ 1 + n 2 cos θ 2 t s 12 = E 0 t = 2n 1 cos θ 1 3.76) n 1 cos θ 1 + n 2 cos θ 2 E 0 i 51

b). E p 3.68-3.71 E i,r,t H i,r,t a) r p 12 = E 0 r E 0 = n 2 cos θ 1 n 1 cos θ 2 = n2 2 cos θ 1 n 1 n 2 2 n2 1 sin2 θ 1 i n 2 cos θ 1 + n 1 cos θ 2 n 2 2 cos θ 1 + n 1 n 2 2 n2 1 sin2 θ 1 t p 12 = E 0 t E 0 i 3.77) = 2n 1 cos θ 1 2n 1 n 2 cos θ 1 = n 2 cos θ 1 + n 1 cos θ 2 n 2 2 cos θ 1 + n 1 n 2 2 n2 1 sin2 θ 1 3.78) θ 1 = θ 2 = 0 a b s p r s,p = n 1 n 2 n 1 + n 2 3.79) t s,p = 2n 1 n 1 + n 2 3.80) s p π E r /E i < 0 3.75 3.77 r12 s = sinθ 2 θ 1 ) sinθ 2 + θ 1 ) r p 12 = tanθ 1 θ 2 ) tanθ 1 + θ 2 ) 3.81) 3.82) n 2 n 1 t r 3.75, 3.76, 3.77, 3.78 r = r 3.83) tt + r 2 = 1 3.84) 3.3.3 n 1 < n 2 cos θ 2 > cos θ 1 s 3.75 r s 12 < 0 p 3.77 θ B ) θ B = tan 1 n2 3.85) n 1 52

r p 12 s p 3.4 d n r 121 r 121 = r 121 e iϕ ) 1 r 2 12 eiϕ 3.86) t 121 = 1 r2 12)e iϕ/2 1 r 2 12 eiϕ 3.87) ϕ := 2nωd c cos θ 2 3.88) ϕ := 2nωd/c) cos θ 2 ϕ = 2nωd/c n ϕ r 121 2 + t 121 2 = 1 3.89) 3.5 z S = E H = ϵ 0 c 2 E B) E,H S = 1 2 E H S l ) 1 S = Re 2 E H = 1 ϵ 2 µ E0 2 l = 1 2 n 1 E 0 2 l 3.90) Z 0 53

n = ϵ/ϵ 0 µ = µ 0 Z 0 Z 0 = µ 0 /ϵ 0 = 376.7Ω u = 1 ϵe E + 1µ ) 4 B B = 1 2 ϵ E0 2 3.91) S = c/n)u c/n θ I = 1 n E 0 2 cos θ 3.92) 2 Z 0 ) P = IV = V 2 /R R Z I i = n 1 Z 0 E 0 i 2 cos θ 1 I r = n 1 Z 0 E 0 r 2 cos θ 1 3.93) I t = n 2 Z 0 E 0 t 2 cos θ 2 p { } n1 I r + I t = r 12 2 n 2 cos θ 1 t 12 2 cos θ 2 E 0 i 2 Z 0 Z 0 { ) 2 n 1 n2 cos θ 1 n 1 cos θ 2 = cos θ 1 Z 0 n 2 cos θ 1 + n 1 cos θ 2 + n ) } 2 2 2n 1 cos θ 1 cos θ 2 E 0 i Z 0 n 2 cos θ 1 + n 1 cos θ 2 = n 1 cos θ 1 E 0 i 2 Z 0 = I i 3.94) T + R = 1 T R T = I t = n 2 t 2 cos θ 2 12 = 4n 1n 2 cos θ 1 cos θ 2 I i n 1 cos θ 1 n 2 cos θ 1 + n 1 cos θ 2 ) 2 3.95) R = I r I i = r 2 12 = n 2 cos θ 1 n 1 cos θ 2 n 2 cos θ 1 + n 1 cos θ 2 3.96) 54

3.6 sin θ 2 = n 1 n 2 sin θ 1 3.97) n n n 1 > n 2 3.97 θ 2 > θ 1 θ 1 3.97 θ 2 θ 2 θ 1 i.e., n 1 /n 2 ) sin θ 1 = 1 θ 1 θ c. n 1 = 1.5 n 2 = 1 θ c = 41.8 θ 1 θ c θ 2 sin θ 2 = n 1 sin θ 1 1 n 2 3.98) cos 2 θ 2 = 1 sin 2 θ 2 < 0 3.99) cos θ 2 n1 cos θ 2 = ±i n 2 ) 2 sin 2 θ 1 1. 3.100) s p r12 s = n 1 cos θ 1 n 2 cos theta 2 n 1 cos θ 1 + n 2 cos theta 2 = 1, 3.101) r p 12 = n 2 cos θ 1 n 1 cos theta 2 n 2 cos θ 1 + n 1 cos theta 2 = 1 3.102) r s = e iθ s,r p = e iθ p s,p θ = θ p θ s tan θ s 2 = tan θ p 2 = sin 2 θ 1 n 2 /n 1 ) 2 cos θ 1 3.103) sin 2 θ 1 n 2 /n 1 ) 2 n 2 /n 1 ) 2 cos θ 1 3.104) tan θ 2 = cos θ 1 sin 2 θ 1 n 2 /n 1 ) 2 sin 2 θ 1. 3.105) 55

p s θ θ 1 θ 1 = π/2, θ c s p d ) tan θ 2 = 0 3.106) dθ 1 sin 2 θ 1 = 2n2 2 n 2 1 + n2 2 3.107) θ 1 θ m tan θ m 2 = n2 1 n 2 2 2n 1 n 2 3.108) θ 1 λ/4 θ = π 2 π/4 n = 1.5 θ i = 51.8 3.6.1 θ 1 θ c E = E t e ik 2 sin θ 2 x+k 2 cos θ 2 z) iωt = E t e i ) ) n k 1 n1 2 2 n sin θ 1 x±k 2 i 2 n sin 2 θ 1 1 z iωt 2 = E t e i k 2 n 1 n 2 sin θ 1 x ωt ) ) e k n1 2 2 n sin 2 θ 1 1 z 2 3.109) + z z 1 l 2 = λ 2 3.110) k 2 n 1 /n 2 ) sin 2 θ 1 1 56

x k 2 n 1 /n 2 ) sin θ 1 n 1 = 1.5, n 2 = 1, θ 1 = 51.8 k 2 n 1 /n 2 ) sin θ 1 = n 2 ω/c)n 1 /n 2 ) sin θ 1 = 11.8 ω/c θ 1 θ c Phase shift G-H 3.6.2 TM p θ 1 θ c 1 2 t 12 = 2n 1 cos θ 1 n 2 cos θ 1 + n 1 cos θ 2 3.111) r 12 = n 2 cos θ 1 n 1 cos θ 2 n 2 cos θ 1 + n 1 cos θ 2 3.112) 2 3 n 1 n 2, n 2 n 1, θ 1 θ 2,θ 2 θ 1 t 23 = 2n 2 cos θ 2 n 1 cos θ 2 + n 2 cos θ 1 3.113) r 23 = n 1 cos θ 2 n 2 cos θ 1 n 1 cos θ 2 + n 2 cos θ 1 3.114) 57

1 2, 2 3 t 23 = t 12, r 23 = r 12 3.83 3.84 r 23 = r 12 3.115) t 12 t 23 = 4n 1n 2 cos θ 1 cos θ 2 n 2 cos θ 1 + n 1 cos θ 2 ) 2 = 1 r2 23 3.116) E t = 1 r2 1 r 2 e iϕ eiϕ/2 E 0, ϕ := 2d n 2ω cos θ 2 3.117) c r 2 = r 2 12 = r 2 23 T = = = = = 2 E t E 0 = 1 r 2 ) 2 1 2r 2 cos ϕ + r 4 1 r 2 ) 2 1 + r 4 2r 2 + 4r 2 sin 2 ϕ 2 1 1 + 4r2 1 r 2 ) sin 2 ϕ 2 2 1 n 2 1 + 2 cos 2 θ 1 n 2 1 cos2 θ 2 2n 1 n 2 cos θ 1 cos θ 2 sin ϕ 2 1 1 + k 2 1 k 2 2 2k 1 k 2 sin ϕ 2 ) 2 ) 2 3.118) k 1 = ω/c)n 2 cos θ 1, k 2 = ω/c)n 1 cos θ 2 cos ϕ = 1 2 sin 2 ϕ/2) 2 z z cos θ 2 k 2 η,q n 2 k 2 = iη, 3.119) n 1 n 2 n Q = 1 k1 2 + n1 n 2 η 2 3.120) 2k 1 η 58

1 T = 1 + Q sinhηd)) 2. 3.121) η,q d d sinh d n 1 = 1.5, θ 1 = 51.8 V 0 E 2 ω ) 2 p ) 2 k2 2 = c n 2mE V 0 ) 1 cos θ 2 = ħ ħ 2 3.122) 2mV0 E) η = ħ k 1 = 2mE ħ Q = k2 1 + η 2 2k 1 η 3.123) 3.124) 3.125) 59