平成 30 年 8 月 17 日 報道機関各位 東京工業大学広報 社会連携本部長 佐藤勲 オイル生産性が飛躍的に向上したスーパー藻類を作出 - バイオ燃料生産における最大の壁を打破 - 要点 藻類のオイル生産性向上を阻害していた課題を解決 オイル生産と細胞増殖を両立しながらオイル生産性を飛躍的に向上

Similar documents
Microsoft Word - PRESS_

研究の背景と経緯 植物は 葉緑素で吸収した太陽光エネルギーを使って水から電子を奪い それを光合成に 用いている この反応の副産物として酸素が発生する しかし 光合成が地球上に誕生した 初期の段階では 水よりも電子を奪いやすい硫化水素 H2S がその電子源だったと考えられ ている 図1 現在も硫化水素

Microsoft Word - PR doc

図 B 細胞受容体を介した NF-κB 活性化モデル

報道機関各位 平成 27 年 8 月 18 日 東京工業大学広報センター長大谷清 鰭から四肢への進化はどうして起ったか サメの胸鰭を題材に謎を解き明かす 要点 四肢への進化過程で 位置価を持つ領域のバランスが後側寄りにシフト 前側と後側のバランスをシフトさせる原因となったゲノム配列を同定 サメ鰭の前

生物時計の安定性の秘密を解明

解禁日時 :2019 年 2 月 4 日 ( 月 ) 午後 7 時 ( 日本時間 ) プレス通知資料 ( 研究成果 ) 報道関係各位 2019 年 2 月 1 日 国立大学法人東京医科歯科大学 国立研究開発法人日本医療研究開発機構 IL13Rα2 が血管新生を介して悪性黒色腫 ( メラノーマ ) を

共同研究チーム 個人情報につき 削除しております 1

図 1. 微小管 ( 赤線 ) は細胞分裂 伸長の方向を規定する本瀬准教授らは NIMA 関連キナーゼ 6 (NEK6) というタンパク質の機能を手がかりとして 微小管が整列するメカニズムを調べました NEK6 を欠損したシロイヌナズナ変異体では微小管が整列しないため 細胞と器官が異常な方向に伸長し

( 図 ) IP3 と IRBIT( アービット ) が IP3 受容体に競合して結合する様子

スライド 1

法医学問題「想定問答」(記者会見後:平成15年  月  日)

理化学研究所環境資源科学研究センターバイオ生産情報研究チームチームリーダー 研究代表者 : 持田恵一 筑波大学生命環境系准教授 研究代表者 : 大津厳生 株式会社ユーグレナと理化学研究所による共同研究は 理化学研究所が推進する産業界のニーズを重要視した連携活動 バトンゾーン研究推進プログラム の一環

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効

の活性化が背景となるヒト悪性腫瘍の治療薬開発につながる 図4 研究である 研究内容 私たちは図3に示すようなyeast two hybrid 法を用いて AKT分子に結合する細胞内分子のスクリーニングを行った この結果 これまで機能の分からなかったプロトオンコジン TCL1がAKTと結合し多量体を形

Microsoft Word - 【広報課確認】 _プレス原稿(最終版)_東大医科研 河岡先生_miClear

<4D F736F F D F D F095AA89F082CC82B582AD82DD202E646F63>

<4D F736F F D20322E CA48B8690AC89CA5B90B688E38CA E525D>

背景 私たちの体はたくさんの細胞からできていますが そのそれぞれに遺伝情報が受け継がれるためには 細胞が分裂するときに染色体を正確に分配しなければいけません 染色体の分配は紡錘体という装置によって行われ この際にまず染色体が紡錘体の中央に集まって整列し その後 2 つの極の方向に引っ張られて分配され

Untitled

PRESS RELEASE (2014/2/6) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL:

Untitled

PowerPoint プレゼンテーション

Untitled

情報解禁日時の設定はありません 情報はすぐにご利用いただけます 基礎生物学研究所配信先 : 岡崎市政記者会東京工業大学配信先 : 文部科学記者会 科学記者会 報道機関各位 2017 年 7 月 25 日 自然科学研究機構基礎生物学研究所国立大学法人東京工業大学 遺伝子撹拌装置をタイミング良く染色体か

みどりの葉緑体で新しいタンパク質合成の分子機構を発見ー遺伝子の中央から合成が始まるー

<4D F736F F D C668DDA94C5817A8AEE90B68CA45F927D946791E58BA493AF838A838A815B83585F8AB28DD79645>

報道発表資料 2007 年 8 月 1 日 独立行政法人理化学研究所 マイクロ RNA によるタンパク質合成阻害の仕組みを解明 - mrna の翻訳が抑制される過程を試験管内で再現することに成功 - ポイント マイクロ RNA が翻訳の開始段階を阻害 標的 mrna の尻尾 ポリ A テール を短縮

60 秒でわかるプレスリリース 2007 年 1 月 18 日 独立行政法人理化学研究所 植物の形を自由に小さくする新しい酵素を発見 - 植物生長ホルモンの作用を止め ミニ植物を作る - 種無しブドウ と聞いて植物成長ホルモンの ジベレリン を思い浮かべるあなたは知識人といって良いでしょう このジベ

1 編 / 生物の特徴 1 章 / 生物の共通性 1 生物の共通性 教科書 p.8 ~ 11 1 生物の特徴 (p.8 ~ 9) 1 地球上のすべての生物には, 次のような共通の特徴がある 生物は,a( 生物は,b( 生物は,c( ) で囲まれた細胞からなっている ) を遺伝情報として用いている )

論文題目  腸管分化に関わるmiRNAの探索とその発現制御解析

Microsoft Word - 研究報告書(崇城大-岡).doc

Microsoft Word - 01.doc

研究背景 糖尿病は 現在世界で4 億 2 千万人以上にものぼる患者がいますが その約 90% は 代表的な生活習慣病のひとつでもある 2 型糖尿病です 2 型糖尿病の治療薬の中でも 世界で最もよく処方されている経口投与薬メトホルミン ( 図 1) は 筋肉や脂肪組織への糖 ( グルコース ) の取り

報道関係者各位 平成 26 年 1 月 20 日 国立大学法人筑波大学 動脈硬化の進行を促進するたんぱく質を発見 研究成果のポイント 1. 日本人の死因の第 2 位と第 4 位である心疾患 脳血管疾患のほとんどの原因は動脈硬化である 2. 酸化されたコレステロールを取り込んだマクロファージが大量に血

新規遺伝子ARIAによる血管新生調節機構の解明

共生菌が植物と共存するメカニズムを解明! ~ 共生菌を用いた病害虫防除技術への応用にも期待 ~ 名古屋大学大学院生命農学研究科の竹本大吾准教授と榧野友香大学院生 ( 現 : 横浜植物 *1 防疫所 ) らの研究グループは 共生菌が植物と共存するためのメカニズムの解明に成功しました 自然界において 植

細胞の構造

報道関係者各位 平成 29 年 2 月 23 日 国立大学法人筑波大学 高効率植物形質転換が可能に ~ 新規アグロバクテリウムの分子育種に成功 ~ 研究成果のポイント 1. 植物への形質転換効率向上を目指し 新規のアグロバクテリウム菌株の分子育種に成功しました 2. アグロバクテリウムを介した植物へ

<4D F736F F D BE391E58B4C8ED2834E C8CA48B8690AC89CA F88E490E690B62E646F63>

抑制することが知られている 今回はヒト子宮内膜におけるコレステロール硫酸のプロテ アーゼ活性に対する効果を検討することとした コレステロール硫酸の着床期特異的な発現の機序を解明するために 合成酵素であるコ レステロール硫酸基転移酵素 (SULT2B1b) に着目した ヒト子宮内膜は排卵後 脱落膜 化

の感染が阻止されるという いわゆる 二度なし現象 の原理であり 予防接種 ( ワクチン ) を行う根拠でもあります 特定の抗原を認識する記憶 B 細胞は体内を循環していますがその数は非常に少なく その中で抗原に遭遇した僅かな記憶 B 細胞が著しく増殖し 効率良く形質細胞に分化することが 大量の抗体産

<4D F736F F D DC58F49288A6D92E A96C E837C AA8E714C41472D3382C982E682E996C D90A78B408D5C82F089F096BE E646F6378>

平成24年7月x日

Microsoft Word - (最終版)170428松坂_脂肪酸バランス.docx

スライド 1

報道機関各位 平成 30 年 11 月 8 日 東京工業大学広報 社会連携本部長 佐藤勲 東京工業大学生命理工学院 第 5 回生命理工オープンイノベーションハブ (LiHub) フォーラム バイオマトリックス : 生命科学 材料工学から健康 医療 美容への架け橋 のご案内 東京工業大学生命理工学院は

_ _2013_宮城島_YR

世界初! 細胞内の線維を切るハサミの機構を解明 この度 名古屋大学大学院理学研究科の成田哲博准教授らの研究グループは 大阪大学 東海学院大学 豊田理化学研究所との共同研究で 細胞内で最もメジャーな線維であるアクチン線維を切断 分解する機構をクライオ電子顕微鏡法注 1) による構造解析によって解明する

記 者 発 表(予 定)

4 章エネルギーの流れと代謝

受精に関わる精子融合因子 IZUMO1 と卵子受容体 JUNO の認識機構を解明 1. 発表者 : 大戸梅治 ( 東京大学大学院薬学系研究科准教授 ) 石田英子 ( 東京大学大学院薬学系研究科特任研究員 ) 清水敏之 ( 東京大学大学院薬学系研究科教授 ) 井上直和 ( 福島県立医科大学医学部附属生

報道発表資料 2002 年 10 月 10 日 独立行政法人理化学研究所 頭にだけ脳ができるように制御している遺伝子を世界で初めて発見 - 再生医療につながる重要な基礎研究成果として期待 - 理化学研究所 ( 小林俊一理事長 ) は プラナリアを用いて 全能性幹細胞 ( 万能細胞 ) が頭部以外で脳

2. PQQ を利用する酵素 AAS 脱水素酵素 クローニングした遺伝子からタンパク質の一次構造を推測したところ AAS 脱水素酵素の前半部分 (N 末端側 ) にはアミノ酸を捕捉するための構造があり 後半部分 (C 末端側 ) には PQQ 結合配列 が 7 つ連続して存在していました ( 図 3

Microsoft PowerPoint マクロ生物学9

脳組織傷害時におけるミクログリア形態変化および機能 Title変化に関する培養脳組織切片を用いた研究 ( Abstract_ 要旨 ) Author(s) 岡村, 敏行 Citation Kyoto University ( 京都大学 ) Issue Date URL http

るが AML 細胞における Notch シグナルの正確な役割はまだわかっていない mtor シグナル伝達系も白血病細胞の増殖に関与しており Palomero らのグループが Notch と mtor のクロストークについて報告している その報告によると 活性型 Notch が HES1 の発現を誘導

A4パンフ

今後の展開現在でも 自己免疫疾患の発症機構については不明な点が多くあります 今回の発見により 今後自己免疫疾患の発症機構の理解が大きく前進すると共に 今まで見過ごされてきたイントロン残存の重要性が 生体反応の様々な局面で明らかにされることが期待されます 図 1 Jmjd6 欠損型の胸腺をヌードマウス

第6回 糖新生とグリコーゲン分解

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事

Microsoft Word - tohokuuniv-press _02.docx

植物が花粉管の誘引を停止するメカニズムを発見

別紙 自閉症の発症メカニズムを解明 - 治療への応用を期待 < 研究の背景と経緯 > 近年 自閉症や注意欠陥 多動性障害 学習障害等の精神疾患である 発達障害 が大きな社会問題となっています 自閉症は他人の気持ちが理解できない等といった社会的相互作用 ( コミュニケーション ) の障害や 決まった手

1. 背景血小板上の受容体 CLEC-2 と ある種のがん細胞の表面に発現するタンパク質 ポドプラニン やマムシ毒 ロドサイチン が結合すると 血小板が活性化され 血液が凝固します ( 図 1) ポドプラニンは O- 結合型糖鎖が結合した糖タンパク質であり CLEC-2 受容体との結合にはその糖鎖が

PowerPoint プレゼンテーション

胞運命が背側に運命変換することを見いだしました ( 図 1-1) この成果は IP3-Ca 2+ シグナルが腹側のシグナルとして働くことを示すもので 研究チームの粂昭苑研究員によって米国の科学雑誌 サイエンス に発表されました (Kume et al., 1997) この結果によって 初期胚には背腹

ポイント 藻類由来のバイオマス燃料による化石燃料の代替を目標として設立 機能性食品等の高付加価値製品の製造販売により事業基盤を確立 藻類由来のバイオマス燃料のコスト競争力強化に向けて 国内の藻類産業の規模拡大と技術開発に取り組む 藻バイオテクノロジーズ株式会社 所在地 茨城県つくば市千現 2-1-6

Microsoft Word CREST中山(確定版)

平成 30 年 8 月 6 日 報道機関各位 東京工業大学 東北大学 日本工業大学 高出力な全固体電池で超高速充放電を実現全固体電池の実用化に向けて大きな一歩 要点 5V 程度の高電圧を発生する全固体電池で極めて低い界面抵抗を実現 14 ma/cm 2 の高い電流密度での超高速充放電が可能に 界面形

生理学 1章 生理学の基礎 1-1. 細胞の主要な構成成分はどれか 1 タンパク質 2 ビタミン 3 無機塩類 4 ATP 第5回 按マ指 (1279) 1-2. 細胞膜の構成成分はどれか 1 無機りん酸 2 リボ核酸 3 りん脂質 4 乳酸 第6回 鍼灸 (1734) E L 1-3. 細胞膜につ

第6回 糖新生とグリコーゲン分解

2. 看護に必要な栄養と代謝について説明できる 栄養素としての糖質 脂質 蛋白質 核酸 ビタミンなどの性質と役割 およびこれらの栄養素に関連する生命活動について具体例を挙げて説明できる 生体内では常に物質が交代していることを説明できる 代謝とは エネルギーを生み出し 生体成分を作り出す反応であること

Microsoft Word doc

2019 年 1 月 21 日 自然科学研究機構基礎生物学研究所東北大学大学院生命科学研究科産業技術総合研究所 サンゴがもつ緑色蛍光タンパク質の働きが明らかに ~ 蛍光による共生パートナーの誘引 ~ サンゴ礁を形作り 南の海の生態系の維持に不可欠な存在であるサンゴは その多くが紫外線や青色光を受ける

別紙 < 研究の背景と経緯 > 自閉症は 全人口の約 2% が罹患する非常に頻度の高い神経発達障害です 近年 クロマチンリモデ リング因子 ( 5) である CHD8 が自閉症の原因遺伝子として同定され 大変注目を集めています ( 図 1) 本研究グループは これまでに CHD8 遺伝子変異を持つ

大学院博士課程共通科目ベーシックプログラム

糖鎖の新しい機能を発見:補体系をコントロールして健康な脳神経を維持する

細胞の構造

報道発表資料 2001 年 12 月 29 日 独立行政法人理化学研究所 生きた細胞を詳細に観察できる新しい蛍光タンパク質を開発 - とらえられなかった細胞内現象を可視化 - 理化学研究所 ( 小林俊一理事長 ) は 生きた細胞内における現象を詳細に観察することができる新しい蛍光タンパク質の開発に成


ポイント 先端成長をする植物細胞が 狭くて小さい空間に進入した際の反応を調べる または観察するためのツールはこれまでになかった 微細加工技術によって最小で1マイクロメートルの隙間を持つマイクロ流体デバイスを作製し 3 種類の先端成長をする植物細胞 ( 花粉管細胞 根毛細胞 原糸体細胞 ) に試験した

Microsoft Word - プレス原稿_0528【最終版】

平成 28 年 6 月 3 日 報道機関各位 東京工業大学広報センター長 岡田 清 カラー画像と近赤外線画像を同時に撮影可能なイメージングシステムを開発 - 次世代画像センシングに向けオリンパスと共同開発 - 要点 可視光と近赤外光を同時に撮像可能な撮像素子の開発 撮像データをリアルタイムで処理する

Peroxisome Proliferator-Activated Receptor a (PPARa)アゴニストの薬理作用メカニズムの解明

の基軸となるのは 4 種の eif2αキナーゼ (HRI, PKR, または ) の活性化, eif2αのリン酸化及び転写因子 の発現誘導である ( 図 1). によってアミノ酸代謝やタンパク質の折りたたみ, レドックス代謝等に関わるストレス関連遺伝子の転写が促進され, それらの働きによって細胞はス

02-08p

という特殊な細胞から分泌されるルアーと呼ばれる誘引物質が分泌され 同種の花粉管が正確に誘引されます (Higashiyama et al., 2001, Science; Okuda, Tsutsui et al., 2009, Nature) モデル植物であるシロイヌナズナにおいてもルアーが発見さ

統合失調症発症に強い影響を及ぼす遺伝子変異を,神経発達関連遺伝子のNDE1内に同定した

第6号-2/8)最前線(大矢)

平成14年度研究報告

国立遺伝研究所教授宮城島進也氏 2. 共生における宿主と葉緑体の関係 葉緑体はシアノバクテリアのたぐいが宿主細胞に共生したものを起源とする そして 宿主と連絡をとりあってお互いに制御している 葉緑体の分裂装置はシアノバクテリアのそれとよく似ている しかし いくつかの重要な成分の遺伝子は宿主の核の方に

この研究成果は 日本時間の 2018 年 5 月 15 日午後 4 時 ( 英国時間 5 月 15 月午前 8 時 ) に英国オンライン科学雑誌 elife に掲載される予定です 本成果につきまして 下記のとおり記者説明会を開催し ご説明いたします ご多忙とは存じますが 是非ご参加いただきたく ご案

かし この技術に必要となる遺伝子改変技術は ヒトの組織細胞ではこれまで実現できず ヒトがん組織の細胞系譜解析は困難でした 正常の大腸上皮の組織には幹細胞が存在し 自分自身と同じ幹細胞を永続的に産み出す ( 自己複製 ) とともに 寿命が短く自己複製できない分化した細胞を次々と産み出すことで組織構造を

ん細胞の標的分子の遺伝子に高い頻度で変異が起きています その結果 標的分子の特定のアミノ酸が別のアミノ酸へと置き換わることで分子標的療法剤の標的分子への結合が阻害されて がん細胞が薬剤耐性を獲得します この病態を克服するためには 標的分子に遺伝子変異を持つモデル細胞を樹立して そのモデル細胞系を用い

報道発表資料 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - ポイント アレルギー発症の細胞を可視化する緑色蛍光マウスの開発により解明 分化 発生等で重要なノッチ分子への情報伝達

本成果は 以下の研究助成金によって得られました JSPS 科研費 ( 井上由紀子 ) JSPS 科研費 , 16H06528( 井上高良 ) 精神 神経疾患研究開発費 24-12, 26-9, 27-

ポイント 細胞の中のエネルギー代謝の中心である ATP をセンシングする 赤 緑 青 (RGB) 色の蛍光 ATP センサーの開発に成功 従来の技術では困難であった 同一細胞内の異なる場所の ATP 動態の同時観察が可能に 海外にある日本のラボ 早稲田バイオサイエンスシンガポール研究所 (WABIO

サカナに逃げろ!と指令する神経細胞の分子メカニズムを解明 -個性的な神経細胞のでき方の理解につながり,難聴治療の創薬標的への応用に期待-

創薬に繋がる V-ATPase の構造 機能の解明 Towards structure-based design of novel inhibitors for V-ATPase 京都大学医学研究科 / 理化学研究所 SSBC 村田武士 < 要旨 > V-ATPase は 真核生物の空胞系膜に存在す

Transcription:

平成 30 年 8 月 17 日 報道機関各位 東京工業大学広報 社会連携本部長 佐藤勲 オイル生産性が飛躍的に向上したスーパー藻類を作出 - バイオ燃料生産における最大の壁を打破 - 要点 藻類のオイル生産性向上を阻害していた課題を解決 オイル生産と細胞増殖を両立しながらオイル生産性を飛躍的に向上 バイオ燃料生産の実用化への道を拓く 概要 東京工業大学科学技術創成研究院化学生命科学研究所の福田智大学院生 ( 研究当時 ) 平澤英里大学院生 ( 研究当時 ) 今村壮輔准教授らの研究グループは 藻類で オイル生産 と 細胞増殖 を両立させることにより オイル生産性を飛躍的 ( 野生株と比べ 56 倍 ) に向上した藻類株の育種に成功した 藻類がオイルを合成 蓄積する条件は 藻類の増殖に適さず オイル生産 と 細胞増殖 は相反するため これまで藻類バイオ燃料生産実現の大きな障壁になっていた 研究グループは オイル生合成遺伝子の一つ GPAT1 の発現を強化させることで オイル生産 と 細胞増殖 が両立することを発見した 今回の発見は 藻類でのオイル生産性向上における最大の課題を根本的に解決したと言え 藻類によるバイオ燃料生産実用化へのブレークスルーになると期待される 本成果は 8 月 17 日 英国の科学雑誌 サイエンティフィック リポーツ (Scientific Reports) オンライン版に掲載される

研究成果研究グループは 藻類オイル ( 注 1) が蓄積する条件における遺伝子の発現に注目 その中で 各種条件で共通して発現が上昇する二つのオイル生合成に関わる遺伝子 GPAT1 と GPAT2 を見出した その後 それぞれの遺伝子を単細胞紅藻シゾン ( 注 2 図 1) 細胞内で人為的に過剰発現させ オイル蓄積量への変化を観察した その結果 GPAT1 過剰発現株では オイルの高蓄積がオイル非蓄積条件 ( 栄養充足条件 ) にも関わらず観察された ( 図 2) 興味深いことに GPAT1 過剰発現株の増殖スピードは 親株と同じだった すなわち GPAT1 過剰発現株は オイル高生産 と 細胞増殖 が両立する株であり ( 図 3 右) そのオイル生産性( 単位時間 単位体積当たりのオイル蓄積量 ) は 最大で従来の 56 倍に増加していた ( 図 4) 図 2. GPAT1 過剰発現によるオイル蓄積 オイル ( 中性脂質 ) を特異的に認識する色素で染色した画像 緑色の ドット状のシグナルが藻類内で蓄積したオイル 赤色は葉緑体の自家蛍光

図 3. オイル生産と細胞増殖の関係オイルを生産させる現状の条件では オイルは生産されるが 細胞の増殖は阻害される 一方 本研究で作出した藻類株では オイル生産と細胞増殖が同時に引き起こされるため オイル生産性の劇的な改善が達成された 背景国連が掲げる持続可能な開発目標 (SDGs) では クリーンで持続可能なエネルギーの利用の拡大 地球温暖化への具体的なアクションを起こすことなどが盛り込まれている 微細藻類を用いたオイル生産は SDGs を達成するための重要な技術と考えられている しかし 微細藻類がオイルを生産する条件は 栄養が欠乏していなければならないなど 細胞の増殖には適さない そのため オイル生産 と 細胞増殖 を同時に実現することは 藻類を用いたオイル生産性の向上において解決すべき課題となっていた ( 図 3 左)

研究の経緯研究グループは以前 藻類にオイルを作らせるスイッチタンパク質 TOR キナーゼ ( 注 3) を同定している (https://www.titech.ac.jp/news/2015/032138.html) TOR キナーゼは オイル生合成の ON/OFF を決定付けるが スイッチが ON になった後 オイル合成が引き起こされるメカニズムは不明であった そこで 研究グループは TOR タンパク質が作用する遺伝子を特定してその機能を強化することで オイル生産能の向上を藻類に付与できるのではと考えた 今後の展開 GPAT1 遺伝子がコードするグリセロール 3 リン酸アシル基転移酵素 ( 注 4) は 藻類のオイル生合成に必須であるため 他の藻類においてもオイル生産性を向上させるための優れた標的となると考えられる また GPAT1 の過剰発現による オイル生産 と 細胞増殖 の両立がなぜ引き起こされたのかを詳細に解明することで さらなるオイル生産性の向上が期待される 用語説明 ( 注 1) 藻類オイル : ここでは 藻類が生産するオイルの中でも バイオ燃料の原料となる中性脂質であるトリアシルグリセロールを指す トリアシルグリセロールをいかに効率よく生産できるかが バイオ液体燃料生産実現における一つの大きな課題となっている ( 注 2) シゾン : 学名は Cyanidioschyzon merolae( 通称シゾン ) イタリアの温泉で見つかった単細胞性の紅藻 ( スサビノリ テングサの仲間 ) 真核生物として初めて 100% の核ゲノムが決定されるなど モデル藻類 モデル光合成真核生物として用いられている ( 注 3) TOR キナーゼ : 真核生物に広く保存されたタンパク質リン酸化酵素 アミノ酸やグルコースなどの栄養源により活性が制御されている 標的分子のリン酸化を通してタンパク質合成を調節し 細胞の成長 ( 大きさ ) を制御している ( 注 4) グリセロール 3 リン酸アシル基転移酵素 : 脂肪酸転移反応を触媒する酵素 脂質の新規合成の一番初めの反応を触媒する 研究サポート この研究は 科学研究費補助金 科学技術振興機構戦略的創造研究推進事業 長 瀬科学技術振興財団研究助成金の支援を受けて実施した

論文情報 掲載誌 :Scientific Reports 論文タイトル :Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae 著者 :Satoshi Fukuda, Eri Hirasawa, Tokiaki Takemura, Sota Takahashi, Kaumeel Chokshi, Imran Pancha, Kan Tanaka, Sousuke Imamura DOI:10.1038/s41598-018-30809-8 問い合わせ先 東京工業大学科学技術創成研究院化学生命科学研究所准教授今村壮輔 ( いまむらそうすけ ) Email: simamura@res.titech.ac.jp TEL: 045-924-5859 FAX: 045-924-5859 取材申し込み先 東京工業大学広報 社会連携本部広報 地域連携部門 Email: media@jim.titech.ac.jp TEL: 03-5734-2975 FAX: 03-5734-3661