A

Similar documents
Gmech08.dvi

応力とひずみ.ppt

sec13.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

曲面のパラメタ表示と接線ベクトル

pdf

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

mugensho.dvi

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

Gmech08.dvi

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

. p.1/14

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

Chap11.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

TOP URL 1

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

Acrobat Distiller, Job 128

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

DVIOUT

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

x ( ) x dx = ax


KENZOU

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

6. Euler x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +


1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =


t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

Untitled

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

meiji_resume_1.PDF

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

7-12.dvi

notekiso1_09.dvi


II 2 II

Gmech08.dvi

FX自己アフリエイトマニュアル

FX ) 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

untitled

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

K E N Z OU

2 1 Introduction (1.1.2) Logistic ث Malthus (1.1.3) (( ) ث)( ) α = ( ) ( + ) [Verhulst 1845] 0 ( ) ( + ) lim ( ) = 0 t (1.1.4) (( ) ث)( ) α = ( ) Logi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

i

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )


untitled

untitled


error_g1.eps

第1章 微分方程式と近似解法

( ) ( )

C:/KENAR/0p1.dvi

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)


-5 -

別冊 各分野における虐待事例と分析

-2-

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

08-Note2-web

振動と波動

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (


i

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Transcription:

A05-132 2010 2 11 1

1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2 Runge-Kutta.................................... 8 2.3.................................... 10 2.4................................ 10 3 13 3.1................................. 13 3.2..................................... 13 4 14 4.1............................... 14 4.2............................ 15 4.3................................ 16 4.3.1.................................. 16 4.3.2............................. 18 4.3.3 XY/XZ........................... 19 4.3.4 /.............................. 20 4.3.5 /................................. 21 4.4.................................... 25 5 26 2

1 1.1 8 100 1 8 [1] 1.2 xyz 3 2 x-y x-z 1.3 2 3 4 5 3

2 2.1 3 M m m d2 r dt 2 = GMm r 2 (2.1) G r(t) (t ) m (2.1) N 1 N M 1 d 2 r dt 2 = GM 1M 2 r 2 G M 1M 3 r 2 (2.2) M 1 M 2 M 3 4

1: N M 1 M 2 M 3 V n i ( m i ) d 2 r m i dt = n 2 j=1 G m im j r 2 ij (2.3) r ij i j i j i,j=1,2,3... n 3 x-y x-z 3 [2] 2 2: 5

x, y, z 3 (x,y or z) x θ ( 3) 3: (x,y or z) x θ cos θ x = x r, sin θ y = y r, sin θ z = z r (2.4) m i d 2 x dt 2 m i d 2 y dt 2 = n j=1 = n j=1 d 2 z m i dt = n 2 j=1 G m im j r 2 ij G m im j r 2 ij G m im j r 2 ij x r y r z r (2.5) (2.6) (2.7) x, y, z, r x = x j x i (2.8) y = y j y i (2.9) z = z j z i (2.10) r = (x j x i ) 2 + (y j y i ) 2 + (z j z i ) 2 (2.11) m i d 2 x i dt 2 = n j=1 Gm i m j (x j x i ) ((x j x i ) 2 + (y j y i ) 2 + (z j z i ) 2 ) 3 2 6 (2.12)

m i d 2 y i dt 2 m i d 2 z i dt 2 = n j=1 = n j=1 Gm i m j (y j y i ) ((x j x i ) 2 + (y j y i ) 2 + (z j z i ) 2 ) 3 2 Gm i m j (z j z i ) ((x j x i ) 2 + (y j y i ) 2 + (z j z i ) 2 ) 3 2 (2.13) (2.14) 7

2.2 Runge-Kutta Runge-Kutta Runge-Kutta Euler 1 x 2 Runge-Kutta dy = f(x, y) (2.15) dx (x n,y n ) x n+1 =x n + x y n+1 k 1 = x f (x n, y n ), k 2 = x f (x n + x, y n + k 1 ) y n+1 = y n + 1 2 (k 1 + k 2 ) (2.16) k 1 x n y n+1 k 2 k 1 2 O(( x 3 )) 2 1 y n Runge-Kutta s k i = x f(x n + c i x, y n + x a ij k j ) j =1 y n+1 = y n + 1 2 (k 1 + k 2 ) (2.17) a ij, b i, c i s 4 Runge-Kutta k 1 = x f (x n, y n ) k 2 = x f(x n + x 2, y n + k 1 2 ) k 3 = x f(x n + x 2, y n + k 2 2 ) k 4 = x f(x n + x, y n + k 3 ) y n+1 = 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ) (2.18) 4 x n x n k 1,k 2,k 3,k 4 y n+1 y n x x 8

4: 4 Runge-Kutta x 0 x 0 +h 4 1. (x 0,y 0 ) f(x 0,y 0 ) h y k 1 2. 1 (x 0 + h/2,y 0 + k 1 /2) (x 0,y 0 ) h y k 2 3. (x 0,y 0 ) (x 0 + h/2,y 0 + k 2 /2) h k 3 4. (x 0,y 0 ) (x 0,y 0 ) (x 0 + h/2,y 0 + k 3 /2) h k 4 5. (x 1,y 1 ) Runge-Kutta 1 2 (2.12)(2.13)(2.14) Runge-Kutta dx dt = v x dv n x m i dt = dy dt = v y j=1 dv n y m i dt = j=1 Gm i m j (x j x i ) ((x j x i ) 2 + (y j y i ) 2 + (z j z i ) 2 ) 3 2 Gm i m j (y j y i ) ((x j x i ) 2 + (y j y i ) 2 + (z j z i ) 2 ) 3 2 (2.19) (2.20) (2.21) (2.22) 9

dz dt = v z dv n z m i dt = j=1 Gm i m j (z j z i ) ((x j x i ) 2 + (y j y i ) 2 + (z j z i ) 2 ) 3 2 (2.23) (2.24) 2 1 Runge-Kutta 2.3 G ( ) 1969 6 27 [4] - / Runge-Kutta h 0.002 G = 6.672 10 11 m 3 s 2 kg 1 A = 1.49597870 10 11 m 2.4 0.002 3142 1 [3] 0 029 % 17 10

( ) 1.0 1.0 / 6023600 1.0 / 408523.5 1.0 / 332946 1.0 / 3098710 1.0 / 1047.355 1.0 / 3498.5 1.0 / 22869 1.0 / 19314 1.0 / 15384615 (1.0 / 332946) 0.01230002 1: ( ) ( / ) x (A[m]) y (A[m]) z (A[m]) 0.0 0.0 0.0 3.572602 10 1-9.154906 10 2-8.598100 10 2 6.082494 10 1-3.491324 10 1-1.955433 10 1 1.160148 10 1-9.266055 10 1-4.018062 10 1-1.146886 10 1-1.328366-6.061551 10 1-5.384208-8.312495 10 1-2.250979 10 1 7.889889 4.595709 1.558429-1.826989 10-1.162732-2.503762 10 1-1.605950 10-2.394293 10-9.400426-3.048800 10-8.732159 10 1 8.911354-8.081773 10 4-1.994630 10 3-1.087262 10 3 2: x, y, z 1969 6 27 6 11

x (A[m/ ]) y (A[m/ ]) z (A[m/ ]) 0.0 0.0 0.0 3.367845 10 3-2.488934 10 2 1.294407 10 2 1.095242 10 2-1.561250 10 2 6.328876 10 3 1.681162 10 2-1.743130 10 3 7.599750 10 4 1.448200 10 2-2.372847 10 4-2.837487 10 4 1.092366 10 3 6.523294 10 3-2.823012 10 3-3.217205 10 3-4.330631 10 3 1.926416 10 3 2.215450 10 4 3.767654 10 3-1.653244 10 3 2.643125 10 3 1.503487 10 3-6.812687 10 4 3.225418 10 4 3.148760 10 3-1.080185 10 3 6.010848 10 4 1.674454 10 4-8.556208 10 5 3: x, y, z 1969 6 27 6 12

3 3.1 x-y 2 x-y-z 3 x-z 23 ( 5) x-y 5: 3.2 500 ( 3142 ) 3 3 13

4 4.1 6: 1. 2. x-z 3. 4. 14

5. / 6. XY/XZ x-z 7. / 8. GO 9. 10. / / x y / 4.2 (0, 0) [2] 2.1 2 15

4.3 4.3.1 7: 7 GO 16

8: 8 7 17

4.3.2 9: 9 6 18

4.3.3 XY/XZ 10: XZ XZ XY/XZ 10 x-z 10 x 23 19

4.3.4 / 11: 1 11 XZ 20

4.3.5 / 12: / 12 / / 4.1 X Y / 21

13: / / 13 / 11 22

14: 1 14 23

15: 3 15 24

4.4 16: 25

5 3 3 3 [1],,, (2008) [2], (2009) [3], (2010) [4] :,pp.12-13,20-21 (2000) 26