平成13年度

Similar documents
φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

本文/目次(裏白)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gmech08.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Ł\”ƒ-2005

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

第90回日本感染症学会学術講演会抄録(I)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

2000年度『数学展望 I』講義録

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

gr09.dvi

all.dvi

第138期事業報告書

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

DVIOUT

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Gmech08.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

量子力学 問題

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

70 : 20 : A B (20 ) (30 ) 50 1

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

untitled

A

all.dvi

TOP URL 1

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

untitled

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

main.dvi

85 4

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

main.dvi

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

all.dvi

Z: Q: R: C: sin 6 5 ζ a, b

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


nsg02-13/ky045059301600033210

nsg04-28/ky208684356100043077

Korteweg-de Vries

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

51305P601A_01.eps

Chap11.dvi

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

B ver B

基礎数学I

SO(2)

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

1. A0 A B A0 A : A1,...,A5 B : B1,...,B


18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

DVIOUT-fujin

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Untitled

°ÌÁê¿ô³ØII

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

i 18 2H 2 + O 2 2H 2 + ( ) 3K

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

CG38.PDF


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Transcription:

3 00097

.... 3..3 4..4 5..6 6 0 7 3.4.4

) ) Lagrange 3) ) 4) 5)

3 r r A B C θ ( α ) r r 3

4 Lagrange B C x = r cosθ () y = r sinθ () x = r cosθ + r cos( θ + θ ) (3) y = r sinθ + r sin( θ + θ ) (4) x = rθ sinθ (5) y = rθ cosθ (6) (7) (8) B C m m T a T b Ta = m( x + y ) = mrθ (9) Tb = m( x + y ) (0) U U a b U = mr sinθ gcosφ () a U = m { r sinθ + r sin( θ + θ )} gcosφ () b Lagrange L( = T + T U U ) a b a b 4

(3) (4) (5) θ (6) θ (7) (8) (9) θ (0) 5

5 r r θ θ θ θ α 0 θ = α () θ = 0 () θ (3) (4) 6

(5) (6) θ (6) θ θ (6) C r r B r A r r, r r, r r = r sinα r = r + r cosα (6) θ 0 (7) A J 7

J = m {( r + r cos α) + ( r sin α) } + mr (8) (9) (7) (9) θ = {( T J) ( r + r cosα r sin α )} = ( Tr Jr ) (30) / / 0 (3) µ ( = m m) γ ( = r r) (3) 3 γ =..4 α π 6 3π 4 δ 4 θ 0 5 α = π π γ.0.5 δ 4 θ 0 r r α α r r 8

γ 3.5.5 0.5 0.5 0.75.5.5.75.5 α 3 γ α δ 3.5.5 0.5 0.5 0.75.5.5.75.5 α 4 γ α θ 0 γ 0.8 0.7 0.6 0.5 0.4 0.3 0. 0....3.4.5 r 5 α γ δ 4 0 8 6 4...3.4.5 r 6 α γ 0 θ 9

6 Mathematica η α µ γ (30) (3) η θ η = π 3 α = π µ = 0.3 γ =.4 7 8 θ 3π 0 θ θ 0 7 θ θ 8 θ 7 ( η = π 3, α = π, µ = 0.3, γ =.4 ) 8 ( η = π 3, α = π, µ = 0.3, γ =.4 ) 0

8 γ =. 9 0 9 7 0 θ θ 0 9 ( η = π 3, α = π, µ = 0.3, γ =.) 0 ( η = π 3, α = π, µ = 0.3, γ =.)

η η = π α = π µ = 0. γ =.4 η ( η π =, α = π, µ = 0., γ =.4 ) ( η π =, α = π, µ = 0., γ =.4 )

7 Lagrange 3

(000) 4

m =.0 m = 0.3 r =.0 r =. gdt = 0 q= 3.459ê80 s0 = 0 q alp = 90 q s0 = 360 q alp g= 9.8 fai = 30 q gcf = gcos@faid gdt tr0 = tr@td = tr0 rr = Hr+ r Cos@alpDL + Hr Sin@alpDL jj = m rr+ m r a = tr0êjj v = Sqrt@Ha Hr+ r Cos@alpDL + gcf Cos@s0 alpdl ê Hr Sin@alpDLD unc = v êaê uncêq ank = s0+ unc ankêq NDSolveA9gcf HHm+ ml r Cos@s3@tDD + m r Cos@s3@tD +s@tddl mrrsin@s@tdd s3@td s@td m r r Sin@s@tDD s@td + m r s3'@td + m r s3'@td + m r s3'@td + mrrcos@s@tdd s3'@td + m r s'@td + m r r Cos@s@tDD s'@td tr@td,s3@td == s3'@td, m r Igcf Cos@s3@tD + s@tdd + r Sin@s@tDD s3@td +Hr + r Cos@s@tDDL s3'@td + r s'@tdm 0, s@td == s'@td,s3@0d == v, s3@0d == ank, s@0d == 0, s@0d == alp=, 8s@tD, s@td, s3@td, s3@td<, 8t, 0, 3<E gy3= Plot@Evaluate@s3@tD s0 ê.out@d@@ddd, 8t, 0, 3<, Frame > TrueD gz3= Plot@Evaluate@s3@tD ê. Out@ D@@DDD, 8t, 0, 3<, Frame > TrueD gy= Plot@Evaluate@s@tDê.Out@ 3D@@DDD, 8t, 0, 3<, Frame > True, PlotStyle > 8Dashing@80.0, 0.0<D<D gz= Plot@Evaluate@s@tD ê. Out@ 4D@@DDD, 8t, 0, 3<, Frame > True, PlotStyle > 8Dashing@80.0, 0.0<D<D gzz= Show@gz, gz3, PlotRange > 80, <, FrameLabel > 8" t "," H θ ê tl,h θ ê tl "<D gyy= Show@gy, gy3, PlotRange > 8, 3<, FrameLabel > 8" t "," θ,θ "<D 5

. 0.3.. 0 0.074533.09439.5708 4.739 9.8 0.53599 0..663 0.6033 0.8399 0.55 3.57.64439 5.53 88s@tD InterpolatingFunction@880., 3.<<, <>D@tD, s@td InterpolatingFunction@880., 3.<<, <>D@tD, s3@td InterpolatingFunction@880., 3.<<, <>D@tD, s3@td InterpolatingFunction@880., 3.<<, <>D@tD<<.5 0.5 0-0.5 - -.5-0 0.5.5.5 3 6

.5.4.3.. 0.9 0.8 0 0.5.5.5 3 0-0.5 - -.5 0 0.5.5.5 3.5 0.5 0-0.5 - -.5 0 0.5.5.5 3 H θê tl,h θê tl.75.5.5 0.75 0.5 0.5 0 0.5.5.5 3 t 7

3 θ,θ 0-0 0.5.5.5 3 t 8

r =.0 r =. aln = 30 alx = 35 q= 3.459ê80 fad = 30 fai = fad q gdt = 0 gcf = gdt 9.8 Cos@faiD as = xn = aln q xx = alx q f@x_d = Hr+ r Cos@xD + gcfê aslêhr Sin@xDL gx= Plot@f@xDê, 8x, xn, xx<, Frame > TrueD fv@x_d = Sqrt@f@xDD gv= Plot@fv@xD, 8x, xn, xx<, Frame > TrueD r =.4 f@x_d = Hr+ r Cos@xD + gcfê aslêhr Sin@xDL gx= Plot@f@xDê, 8x, xn, xx<, Frame > True, PlotStyle > 8Dashing@80.0, 0.0<D<D fv@x_d = Sqrt@f@xDD gv= Plot@fv@xD, 8x, xn, xx<, Frame > True, PlotStyle > 8Dashing@80.0, 0.0<D<D grr= Show@gx, gx, PlotRange > 80, 3.<, FrameLabel > 8" α ", " γ "<D grr= Show@gv, gv, PlotRange > 80, 3.<, FrameLabel > 8" α ", " "<D.. 30 35 0.074533 30 0.53599 0 0 0.53599 9

.3569. H.+. Cos@xDL Csc@xD.5 0.5 0 0.5 0.75.5.5.75.5. è H.+. Cos@xDL Csc@xD.8.6.4. 0.8 0.5 0.75.5.5.75.5.4. H.4+. Cos@xDL Csc@xD.5.75.5.5 0.75 0.5 0.5 0.75.5.5.75.5. è H.4+. Cos@xDL Csc@xD 0

.8.6.4. 0.5 0.75.5.5.75.5 γ 3.5.5 0.5 0.5 0.75.5.5.75.5 α 3.5.5 0.5 0.5 0.75.5.5.75.5 α

r =.0 q= 3.459ê80 ald = 90 alp = ald q fad = 30 fai = fad q gdt = 0 gcf = gdt 9.8 Cos@faiD as = xn =.0 xx =.5 f@x_d = Hx+ r Cos@alpD + gcfê aslêhr Sin@alpDL gx= Plot@f@xDê, 8x, xn, xx<, Frame > TrueD fv@x_d = Sqrt@f@xD asd gv= Plot@fv@xD, 8x, xn, xx<, Frame > TrueD ald = 0 alp = ald q f@x_d = Hx+ r Cos@alpD + gcfê aslêhr Sin@alpDL gx= Plot@f@xDê, 8x, xn, xx<, Frame > True, PlotStyle > 8Dashing@80.0, 0.0<D<D fv@x_d = Sqrt@f@xD asd gv= Plot@fv@xD, 8x, xn, xx<, Frame > True, PlotStyle > 8Dashing@80.0, 0.0<D<D grr= Show@gx, gx, PlotRange > 80, 0.8<, FrameLabel > 8" r "," γ "<D grr= Show@gv, gv, PlotRange > 80, 5<, FrameLabel > 8" r "," "<D. 0.074533 90.5708 30 0.53599 0 0

..5. H3.6795 0 7 + xl 0.75 0.7 0.65 0.6 0.55 0.5...3.4.5. " 3.6795 0 7 + x 3.5 3.5.5...3.4.5 0.09439.547 H 0.5 + xl 0.55 0.5 0.45 0.4 0.35 0.3...3.4.5.803 è 0.5 + x 3

.5 0.5 0 9.5 9 8.5...3.4.5 γ 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 4 0 8 6 4...3.4.5 r...3.4.5 r 4