ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

Similar documents
(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

QMI_10.dvi


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Untitled

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

The Physics of Atmospheres CAPTER :

Mott散乱によるParity対称性の破れを検証

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

TOP URL 1

BH BH BH BH Typeset by FoilTEX 2

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

AccessflÌfl—−ÇŠš1



untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

i


Wide Scanner TWAIN Source ユーザーズガイド

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

phs.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

meiji_resume_1.PDF

LD

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

85 4

untitled

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


Telescope aperture 1.5mφ Telescope length Fit within the H-IIA nose fairing Spatial resolution 0.1" in UV 0.16" in Vis/NIR (Diffraction limit of 1.5mφ

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

devicemondai

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

DVIOUT-fujin

Part () () Γ Part ,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

SO(2)

PDF

cm H.11.3 P

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

Gmech08.dvi

2

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

LLG-R8.Nisus.pdf

橡実験IIINMR.PDF


7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

news

「産業上利用することができる発明」の審査の運用指針(案)

untitled

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

これわかWord2010_第1部_ indd

パワポカバー入稿用.indd

これでわかるAccess2010


8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)


Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Transcription:

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 2 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 3 / 35

5.4.1 FTS Michelson ( ) x = 2(x b x a ) k x = 2π λ x ( ) output ( ) k T (k, x) = 1 2 [1 + cos(k x)](?) Fig 1: Mclean ( 4 ) Mclean 2017/5/10 4 / 35

5.4.1 T (k, x) E(t) = E 0 exp (iωt), E(t) 2 = E 0 2 Beam Splitter A,B E A + E B E A + E B = 1 2 E 0 exp (iωt) + 1 2 E 0 exp (iωt + ik x) = 1 2 E 0 exp (iωt)(1 + exp (ik x)) E A + E B 2 = 1 4 E 0 2 (2 + exp (ik x) + exp ( ik x)) = 1 2 E 0 2 (1 + cos(k x)) ( 4 ) Mclean 2017/5/10 5 / 35

5.4.1 FTS I(k) F ( x) = c 0 I(k)T (k, x)dk = const. + c 2 F ( x): Interferogram I(k) I(k) = 2 π 0 F ( x) cos(k x)d x 0 I(k) cos(k x)dk FTS R = 4 x max /λ Ex. x max = 10 cm, λ = 1 µm R = 400, 000 S/N FTS ( 4 ) Mclean 2017/5/10 6 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 7 / 35

5.4.2 : plane parallel plates d( l) n(= 1) θ( 1)( θ) mλ = 2nd cos θ (θ ) Fig 2: https://ja.wikipedia.org/wiki/ ( 4 ) Mclean 2017/5/10 8 / 35

5.4.2 narrow band prefilter Angular diameter: δβ = 8/R Free spectral range: λ FSP = λ m = λ2 2nd (cos θ 1?) Fig 3: Mclean ( 4 ) Mclean 2017/5/10 9 / 35

5.4.2 : R = λ δλ = λ λ FSP λ FSP δλ = 2F nd λ : F = λ FSP δλ plate F = π r/(1 r) 30-50 Transmitted intensity: δ = 2π λ 2nd cos θ I(δ) I(0) = 1 1 + (2F/π) 2 sin 2 (δ/2) ( 4 ) Mclean 2017/5/10 10 / 35

5.4.2 Fig 4: https://www.kogakugiken.co.jp/products/etalons.html ( 4 ) Mclean 2017/5/10 11 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 12 / 35

5.4.3 Fabry-Perot etalon mλ = 2nd cos θ Fabry-Perot etalon 1/2 blocking layer Fig 5: Mclean ( 4 ) Mclean 2017/5/10 13 / 35

5.4.3 ( ) 1/4 3-5 Fig 6: https: //www.global-optosigma.com/jp/ category/opt_d/opt_d03.html ( 4 ) Mclean 2017/5/10 14 / 35

5.4.3 λ = λ 0 1 ( n0 n e ) 2 sin 2 φ n 0 : ( 1) n e : spacer φ : external angle (blue shift) Fig 7: https: //www.global-optosigma.com/jp/ category/opt_d/opt_d03.html ( 4 ) Mclean 2017/5/10 15 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 16 / 35

5.5.1 3 Photon detectors ( ) Thermal detectors ( ) Coherent detectors ( 4 ) Mclean 2017/5/10 17 / 35

5.5.1 Photon or Thermal Photon detectors Thermal detectors Thermal detector spectral distribution (P ) Photon detector (N = P/hν) (N/P = λ/hc) ( 4 ) Mclean 2017/5/10 18 / 35

5.5.1 Photon detectors Photoemission device: charge carrier (electron) (external photoelectric effect) PMT photocathode UV imaging down conversion low energy photons (fluoresce) Photoabsorption device: charge carrier (internal photoelectric effect) Photoconductor effect free charge carrier Photovoltaic (Photodiode) effect carrier ( 4 ) Mclean 2017/5/10 19 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 20 / 35

5.5.2 valence band: conduction band: : forbidden energy gap (E G ) Fig 8: Mclean ( 4 ) Mclean 2017/5/10 21 / 35

5.5.2 ( )/ ( ) valence band conduction band ( ) E G conduction band valence band ( 4 ) Mclean 2017/5/10 22 / 35

5.5.2 valence band conduction band E th (ev) = kt = 0.026(T/300) ev valence band hole ( electron-hole pairs) E G 1eV 0eV 3.5eV 1eV 38 2.25eV(550nm) exp ( E G /2kT ) E G ( 4 ) Mclean 2017/5/10 23 / 35

5.5.2 ( ) Table 5.1 IV III-V (GaAs, InSb) II-VI (HgCdTe) Table 5.2 valence band conduction band ( ) λ c = hc 1.24 µm ev = E G E G ( 4 ) Mclean 2017/5/10 24 / 35

5.5.2 forbidden gap n-type conduction band p-type valence band Table 5.3 Fig 9: Mclean ( 4 ) Mclean 2017/5/10 25 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 26 / 35

5.5.3 Photoconductor electron-hole pair electron hole electron Fig 10: Mclean P [W] I = eηp hν vτ l η : τ : mean carrier lifetime ( a few milliseconds) v: charged carrier (v = µe = µv/l)(µ: carrier ) ( 4 ) Mclean 2017/5/10 27 / 35

5.5.3 Photoconductor transit time: l/v mean carrier lifetime transit time : G = vτ/l : S = I/P or V/RP S = eηg hc : 4eGIB (B: electrical bandwidth) ( 4 ) Mclean 2017/5/10 28 / 35

5.5.3 Photodiode p-n electron hole (depletion region) n-type n-type p-type (E F )( 1/2 ) E F n-type conduction band p-type valence band ( 4 ) Mclean 2017/5/10 29 / 35

5.5.3 Photodiode Fig 11: Mclean junction region (X 1 + X 2 ) V 0 p (forward bias) p depletion region (reversed bias) ( 4 ) Mclean 2017/5/10 30 / 35

5.5.3 Photodiode depletion region electron-hole pair P [W] I = eηp hν noise = 2eIB photoconductor G = 1 1/ 2 depletion region ( 4 ) Mclean 2017/5/10 31 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 32 / 35

5.5.4 Bolometer Thermometer (QE(η) 100%) Absorber( C [J/K]) Thermometer Absorber heat sink G [W/K] P [W] E = ηp t ( hν...??) T = T T 0 = E/C T = T 0 + (P + P bias )/G bolometer ( 4 ) Mclean 2017/5/10 33 / 35

Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot etalon 5.4.3 Interference filters 5.5 Detectors 5.5.1 Classification 5.5.2 Semiconductors 5.5.3 Photoconductors and photodiodes 5.5.4 Thermal detectors 5.5.5 Coherent detectors ( 4 ) Mclean 2017/5/10 34 / 35

5.5.5 Heterodyne Local Oscillator 1GHz : cryogenic transistor pre-amplifier 1GHz 40GHz: FET, parametric, and maser amplifier 40GHz : ( ) ν IF = ν S ν LO mixer diode: I-V I = V 2 I P SIS mixer: superconductor ( 4 ) Mclean 2017/5/10 35 / 35