3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

Similar documents
R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

sec13.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Gmech08.dvi


ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


notekiso1_09.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Gmech08.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


β

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

B ver B

量子力学 問題

i

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

0 4/

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Planck Bohr


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

A

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

II 2 II

応力とひずみ.ppt

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

液晶の物理1:連続体理論(弾性,粘性)



x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

Part () () Γ Part ,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

PowerPoint プレゼンテーション

dvipsj.8449.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

eto-vol2.prepri.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

1

構造と連続体の力学基礎

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Chap11.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.



TOP URL 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


untitled

08-Note2-web

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r


simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

77

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

数学演習:微分方程式


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

sin.eps

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

II

2000年度『数学展望 I』講義録

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Transcription:

filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x, y, z)) ĤΨ(x, y, z; t) = i h Ψ(x, y, z; t), () t (.) Ĥψ(x, y, z) = Eψ(x, y, z), (E : ) (.4) Ψ(x, y, z; t) = ψ(x, y, z)exp( iet/ h)() (.5) = x + y + z (.6) 1

(x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ) = r + r r + 1 r sin θ = 1 r r (r r ) + 1 = 1 r r r + 1 r sin θ θ (sin θ θ ) + 1 θ (sin θ θ ) + 1 r sin θ θ (sin θ θ ) + 1 r sin θ r sin θ ϕ (.7) r sin θ ϕ (.8) ϕ (.9).9 (x = r cos ϕ, y = r sin ϕ, z) = r + 1 r r + 1 r ϕ + (.10) z = 1 r r (r r ) + 1 r ϕ + (.11) z (.14 x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ (.1) r = ( < x <, < y <, < z < ), (.1) x + y + z, tan ϕ = y x, tan θ = x + y, (.14) z (0 r <, 0 θ π, 0 ϕ π). (.15) r x = x (x + y + z ) 1/ = 1 (x + y + z ) 1/ 1 x = x r = sin θ cos ϕ, y, z r x = sin θ cos ϕ, r y = sin θ sin ϕ, r z ϕ x ( ) y = tan ϕ x x x = cos θ (.16) y ( ) ϕ 1 x = x cos ϕ ϕ x = sin ϕ r sin θ y, z ϕ θ ϕ x = sin ϕ r sin θ, ϕ y = cos ϕ r sin θ, ϕ z = 0, (.17)

θ x cos θ cos ϕ =, r θ y cos θ sin ϕ =, r θ z = sin θ r (.18) x, y, z r, θ, ϕ x, y, z = ( ) r + ( ) θ + ( ) ϕ, x x r x θ x ϕ = ( ) r + ( ) θ + ( ) ϕ, y y r y θ y ϕ = ( ) r + ( ) θ + ( ) ϕ z z r z θ z ϕ r, θ, ϕ.16,(.17),(.18) x, y, z x = (sin θ cos ϕ) r + y z = (sin θ sin ϕ) ( cos θ sin ϕ r + r = (cos θ) ( ) sin θ r r θ ( ) ( ) cos θ cos ϕ sin ϕ r θ r sin θ ϕ, (.19) ) ( ) cos ϕ θ + r sin θ ϕ, (.0) (.1).19 = r x x r ( ) + θ x x θ ( ) x + ϕ x ϕ ( ) x (.) ( U(x, y, z) Ĥ (r, ϕ, θ) p r = mṙ, p ϕ = mr θ, pϕ = mr sin θ ϕ Ĥ = m (ẋ + ẏ + ż ) + U(x, y, z) = m (ṙ + r θ + r sin θ ϕ ) + U(r sin θ cos ϕ, r sin θ sin ϕ, r cos θ) = 1 m (p r + p θ r + p ϕ r sin ) + U(r sin θ cos ϕ, r sin θ sin ϕ, r cos θ) (.) θ p r ˆp r = h i r, p θ ˆp θ = h i θ, p ϕ ˆp ϕ = h i ϕ (.4)

= ( r + 1 r θ + 1 r sin θ ϕ ) (.5).7.8.7.8 [4],[5],[6] bounded π π. xyz (x, y, z) (x + dx, y + dy, z + dz Ψ(x, y, z; t) dx dy dz (.6) xyz + + + Ψ (x, y, z; t)ψ(x, y, z; t) dx dy dz = 1 (.7) (r, ϕ, θ) (r + dr, ϕ + dϕ, θ + dθ Ψ(r, ϕ, θ; t) r sin θ drdθ dϕ (.8) π π 0 0 0 Ψ (r, ϕ, θ; t)ψ(r, ϕ, θ; t) r sin θdr dθdϕ = 1 (.9) 4

r sin θ (0 r <, 0 θ π, 0 ϕ π) Jacobian dxdydz = r sin θdrdθdϕ dxdydz = Jdrdθdϕ, (.0) x x x r θ ϕ sin θ cos ϕ r cos θ cos ϕ r sin θ sin ϕ D(x, y, z) J D(r, θ, ϕ) = y y y r θ ϕ = sin θ sin ϕ r cos θ sin ϕ r sin θ cos ϕ cos θ r sin θ 0 z r z θ z ϕ = r sin θ. (.1) dr, r sin θdθ, rdϕ Ψ. ( ().1, ˆl = h i r = ˆl x i + ˆl y j + ˆl z k (.1) ˆl x = h i (y z z y ), ˆly = h i (z x x z ), ˆlz = h i (x y y x ).(.) ˆl ˆl x + ˆl y + ˆl z. (.) hˆl = h i r 5

[ˆl x, ˆl y ] = i hˆl z, [ˆl y, ˆl z ] = i hˆl x, [ˆl z, ˆl x ] = i hˆl y, (ˆl ˆl = i hˆl) (.4) [ˆl, ˆl x ] = [ˆl, ˆl y ] = [ˆl, ˆl z ] = 0, ([ˆl, ˆl] = 0). (.5) z Y lm x, y ( ˆl ± ˆl x ± iˆl y, ˆl ± = ˆl. (.6) [ˆl z, ˆl ± ] = ± hˆl ±. (), (.7) [ˆl +, ˆl ] = hˆl z, (.8) [ˆl, ˆl ± ] = 0, (.9) ˆl ˆl ˆl = ˆl z + 1 (ˆl +ˆl + ˆl ˆl+ ), (.10) = ˆl ˆl+ + ˆl z + hˆl z, (.11) = ˆl +ˆl + ˆl z hˆl z. (.1) :. ( ˆl x = i h sin ϕ ) cos θ cos ϕ + (.1) θ sin θ ϕ ( ˆl y = i h cos ϕ ) cos θ sin ϕ + (.14) θ sin θ ϕ ˆl z = h i ϕ, (.15) ( ˆl ± = he ±iϕ ± ) θ + i 1 () (.16) tan θ ϕ { ( ˆl = h 1 sin θ ) + 1 } sin θ θ θ sin θ (.17) ϕ 6

( ˆl x = h ( y i z z ), ˆly = h ( z y i x x ), ˆlz = h z i ( x y y ) (.18) x (.19),(.0),(.1), (.1),(.14),(.15) (.1) ( ) cos θ ˆl x = h [ cos ϕ sin θ θ + sin ϕ θ sin ϕ cos ϕ(1 + cos θ) sin θ ϕ ( ) ( ) ( ) cos θ + cos ϕ sin ϕ cos θ sin θ ϕθ + cos ϕ ], (.19) sin θ ϕ ( ) cos θ ˆl y = h [ sin ϕ sin θ θ + cos ϕ θ + sin ϕ cos ϕ(1 + cos θ) sin θ ϕ (.0) ( ) ( ) ( ) cos θ cos ϕ sin ϕ cos θ sin θ ϕθ + sin ϕ ], sin θ ϕ ˆl z = h ϕ (.1) (.19), (.0),(.1).17. ˆl Y (θ, ϕ) = λy (θ, ϕ), (.) Y (θ, ϕ) = Θ(θ)Φ(ϕ), (.) ϕ Φ(ϕ) = m Φ(ϕ), (.4) Φ m (ϕ) = 1 exp(imϕ), (m = 0, ±1, ±,.). π (.5) m z Φ m (ϕ) { 1 h (sin θ θ ) sin θ θ Θ(θ) Φ(ϕ) + Θ(θ) } sin θ ( m )Φ(ϕ) = λθ(θ)φ(ϕ) (.6) 1 d (sin θ ddθ ) ( ) sin θ dθ Θ(θ) + λ m sin Θ(θ) = 0. (.7) θ ξ = cos θ dξ = sin θdθ d dθ = dξ d dθ dξ = sin θ d dξ. (.8) 7

Θ(θ) P (ξ)(= P ) [ d (1 ξ ) d ] ( ) P + λ m P = 0 (.9) dξ dξ 1 ξ ( ) (1 ξ ) d P dp ξ dξ dξ + λ m P = 0. (.0) 1 ξ (Legendre) λ = l(l + 1), l = 0, 1,, P m l (ξ) ˆl, ˆl z Y lm (θ, ϕ) ( 1) m+ m l + 1 (l m )! 4π (l + m )! P m l (cos θ) e imϕ, (.1) Y lm(θ, ϕ) = ( ) m Y l m (θ, ϕ). (.) Y lml (θ, ϕ) spherical harmonics π 0 sin θdθ π : () 0 dϕ Ylm(θ, ϕ) Y l m (θ, ϕ) = δ ll δ mm. (.) Y 00 (θ, ϕ) = 1 4π, (.4) Y 1,±1 (θ, ϕ) = 1 π sin θe±iϕ, (.5) Y 1,0 (θ, ϕ) = 1 cos θ, (.6) π Y,± (θ, ϕ) = 1 5 4 π sin θe ±iϕ = 1 5 8 π (1 cos θ)e±iϕ, (.7) Y,±1 (θ, ϕ) = 1 5 π cos θ sin θe±iϕ = 1 5 4 π sin θe±iϕ, (.8) Y,0 (θ, ϕ) = 1 4 5 π ( cos θ 1) = 1 8 5 (1 + cos θ), (.9) π (.40) l + 1 Y lm (0, 0) = 4π δ m0, (.41) l + 1 Y lm (0, ϕ) = 4π δ m0. (.4) 8

.4 m l = 0 l 0 Y lm (θ, ϕ), Y l m (θ, ϕ) 1. l = 1(p ) Y px 1 (Y 1, 1 Y 1,+1 ) = 4π Y py i (Y 1, 1 + Y 1,+1 ) = Y pz Y 1,0 = sin θ cos ϕ = 4π x r, (.4) y 4π r, (.44) sin θ sin ϕ = 4π 4π cos θ = z 4π r. (.45) p. l = (d Y dzx 1 15 (Y, 1 Y,1 ) = 16π Y dyz i 15 (Y, 1 + Y,1 ) = 15 zx sin(θ) cos ϕ = 4π r, (.46) 15 yz sin(θ) sin ϕ = 16π 4π r, (.47) 15 x y (.48), 16π r Y dx y 1 15 (Y, + Y, ) = 16π sin θ cos(ϕ) = 9

Y dxy Y dz Y,0 = i 15 (Y, Y, ) = 5 16π ( cos θ 1) = 15 xy 16π sin θ sin(ϕ) = 16π r, (.49) ( ) z 4π r 1. (.50) 1. (. ˆl ˆl z. n.5 ˆl Ylm = l(l + 1) h Y lm, (l = 0, 1,, ) (.51) ˆl z Y lm = m hy lm, ( l m l), (.5) ˆl ± Y lm = l(l + 1) m(m ± 1) hy lm±1, () (.5) = (l m)(l ± m + 1) hy lm±1, () (.54) θ, ϕ (.51),(.5), (.5) : (A) (.51).0 (B) (.5m ˆl, ˆl z Y lm Y lm Y l m = δ ll δ mm (.55) ˆl Y lm ˆl x + ˆl y + ˆl z Y lm = Y lm ˆl xˆl x Y lm + Y lm ˆl y ˆl y Y lm + m h = (ˆl x Y lm ) (ˆl x Y lm ) + (ˆl y Y lm ) (ˆl y Y lm ) + m h 0 (.56) 10

l 0 l(l + 1) 0. (.57).9ˆl ± Y lm ˆl l ˆl (ˆl± Y lm ) = ˆl ±ˆl Ylm = l(l + 1) h (ˆl ± Y lm ) (.58).7 ˆl z ˆl+ Y lm = (ˆl +ˆlz + hˆl + )Y lm = m hˆl + Y lm + hˆl + Y lm = h(m + 1)ˆl + Y lm (.59) ˆl + Y lm m ˆl z ˆl z ˆl Y lm = h(m 1)ˆl Y lm (.60) ˆl Y lm m ˆl z ˆl + raising operator ˆl lowering operator ˆl ± Y lm = C ± (l, m)y lm±1 (.61) ˆl ± Y lm ( (ˆl ± Y lm ) (ˆl ± Y lm ) 0. (.6) (.6),(.11), (.1), (.5), (.5) (ˆl ± Y lm ) (ˆl ± Y lm ) = Y lm (ˆl ± ) ˆl± Y lm = Y lm (ˆl )ˆl ± Y lm = Y lm (ˆl ˆl z ± hˆl z ) Y lm 0. (.6) l(l + 1) m + m, (.64) l(l + 1) m m (.65) l(l + 1) 0 l 0.64.65 l m l (.66) 11

m m min ) ˆl Y lmmin = 0 (.67) (.1) Y lmmin l(l + 1) h = (m min ) h m min h (.68) m m max ) ˆl + Y lmmax = 0 (.69) (.11) Y lmmax l(l + 1) h = (m max ) h + m max h (.70) m min = l, m max = +l m ˆl + 1 (a) l m (l + 1) (b) m m = l, (l 1),, 1, 0, 1,,, l 1, l (.71) (C).5.61 C ± (lm).61 C ± (lm) Y l,m±1 Y l,m±1 = Y lm ˆl ˆl± Y lm = Y lm (ˆl ˆl z hˆl z )Y lm = [l(l + 1) m(m ± 1)] h = [(l m)(l ± m + 1)] h (.7) C + (lm) = h (l m)(l + m + 1), (.7) C (lm) = h (l + m)(l m + 1) (.74) 1

(D) m l ˆl l h l(l + 1) h ( x, y l x, l y.6 ( l x ) Y lm (ˆl x ) Y lm ( Y lm ˆl x Y lm ), (.75) ( l y ) Y lm (ˆl y ) Y lm ( Y lm ˆl y Y lm ). (.76) ( l x ) = 1 4 Y lm (ˆl + + ˆl + ˆl +ˆl + ˆl ˆl+ ) Y lm 1 Y lm (ˆl + + ˆl ) Y lm = h [(l + m)(l m + 1) + (l m)(l + m + 1)] 4 = h (l + l m ). (.77) ( l y ) = h (l + l m ) (.78) ( l x ) + ( l y ) = h (l + l m ) (.79) m = l l l = 0 4 U(r), (r = x + y + z ), [ h m + U(r)]ψ(x, y, z) = Eψ(x, y, z), (E : ) (4.1) (x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ) = r + r r + 1 r sin θ = 1 r r (r r ) + 1 r sin θ 1 θ (sin θ θ ) + 1 θ (sin θ θ ) + 1 r sin θ r sin θ ϕ (4.) ϕ (4.)

(.17) = r + r r ˆl r h = 1 r r (r r ) r ˆl. (4.4) h ψ R(r) Y lm (θ, ϕ) (4.1) ψ(x, y, z) = R(r)Y lm (θ, ϕ). (4.5) ˆl Ylm (θ, ϕ) = l(l + 1) h Y lm (θ, ϕ) (4.6) R(r) [ h d R m dr + dr r dr ] l(l + 1) R + U(r)R = ER (4.7) r r [ h d R m dr + ] ] dr l(l + 1) h + [U(r) + R = ER (4.8) r dr mr U(r) l(l + 1) h (4.9) mr R(r) U(r) l (4.8) χ(r) R(r) = χ(r), χ(r) rr(r), (4.10) r 1 d χ(r) = d R(r) + dr(r). (4.11) r dr dr r dr 4.104.114.8 χ(r) [ h d ] ] χ(r) l(l + 1) h + [U(r) + χ(r) = Eχ(r). (4.1) m dr mr 1 14

[1] 1974 [] 1994 [] 1995 [4] [5] 5 [6] III 16 15