Vol. 32, Special Issue, S 1 S 17 (2011)

Similar documents
all.dvi

EPSON VP-1200 取扱説明書


t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

PSCHG000.PS

all.dvi

untitled

ohpmain.dvi

EPSON LP-S7000 セットアップガイド

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

新たな基礎年金制度の構築に向けて

meiji_resume_1.PDF

48 * *2

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

EPSON LP-8900ユーザーズガイド

29


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Jacobson Prime Avoidance

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Part () () Γ Part ,

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

2006 No.110

しろうさぎ43号_cs5.indd

R R 16 ( 3 )

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

直交座標系の回転

第84回日本遺伝学会-抄録集.indd

PSCHG000.PS

waseda2010a-jukaiki1-main.dvi

DVIOUT-ar

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

研究シリーズ第40号


23_02.dvi

note4.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

学習の手順

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(Junjiro Ogawa),,,,, 1 IT (Internet Technology) (Big-Data) IoT (Internet of Things) ECO-FORUM 2018 ( ) ( ) ( ) ( ) 1

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

shuron.dvi

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Microsoft Word - 11問題表紙(選択).docx

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

chap10.dvi

クローニングのための遺伝学

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

行列代数2010A

untitled

TOP URL 1

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

,,..,. 1

t.dvi

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =


85 4

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

P1.\..

10_11p01(Ł\”ƒ)

P1.\..

Q34Q35 2

レイアウト 1

untitled

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

) 9 81

untitled

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Mantel-Haenszelの方法

dvi

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

SO(2)

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

( )

Taro10-名張1審無罪判決.PDF

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

linearal1.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

n ( (

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R


EPSON LP-8900スタートアップガイド

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

2


Transcription:

Vol. 32, Special Issue, S 1 S 17 (2011) e-mail:luke154@jcom.home.ne.jp 1. 1.1 7 1900 800 2

S2 1.2 19 1909 Herman Nilsson-Ehle F 2 F 3 1 3 2 3 4 E. M. East 1.3 Wilhelm Ludwig Johannsen 1900 19 574 5,494 1902 5,494 1900 2 1901 1902 gene genotype phenotype

S3 2. 2.1 1910 Ronald Aylmer Fisher The correlation between relatives on the supposition of Mendelian inheritance Biometrika 1918 epistasis population genetics 1960 2 A 3 A 1A 1, A 1A 2, A 2A 2 f 11, 2f 12, f 22 (f 11 +2f 12 + f 22 =1) g 11, g 12, g 22 A 1, A 2 2 A 1 : p = f 11 + f 12 A 2 : q = f 12 + f 22 (1) (p + q =1) ḡ ḡ = f 11g 11 +2f 12g 12 + f 22g 22 (2) ḡ y 11 = g 11 ḡ y 12 = g 12 ḡ

S4 y 22 = g 22 ḡ (3) y 11, y 12, y 22 A 1, A 2 θ 1, θ 2 A 1A 1, A 1A 2, A 2A 2 2θ 1, θ 1 + θ 2,2θ 2 dominance A 1A 1 y 11 2θ 1 2 Q = f 11(y 11 2θ 1) 2 +2f 12(y 12 θ 1 θ 2) 2 + f 22(y 22 2θ 2) 2 (4) Q θ 1, θ 2 θ 1, θ 2 A 1, A 2 average effect y 11, y 12, y 22 θ 1 + θ 1, θ 1 + θ 2, θ 2 + θ 2 A 1 1 Q θ 1, θ 2 (4) θ 1, θ 2 0 1. θ 1, θ 2 g 11 = 100, g 12 = 90, g 22 =60 f 11 =0.25, f 12 =0.25, f 22 =0.25 ḡ = 85, θ 1 = 10, θ 2 = 10. f 11 =0.50, f 12 =0.25, f 22 =0.00 ḡ = 95, θ 1 =2.5, θ 2 = 7.5

Q = 4f 11(y 11 2θ 1) 4f 12(y 12 θ 1 θ 2) = 0 θ 1 Q = 4f 12(y 12 θ 1 θ 2) 4f 22(y 22 2θ 2)=0 θ 2 S5 (5a) (5b) pθ 1 + qθ 2 =0 (6) θ = θ 1 θ 2 (7) θ 1 = qθ θ 2 = pθ (8a) (8b) θ A 1 A 2 A 1 A 2 p = q a A 1A 1, A 1A 2, A 2A 2 2θ 1, θ 1 + θ 2,2θ 2 A 1 δ 11 = y 11 2θ 1 δ 12 = y 12 θ 1 θ 2 δ 22 = y 22 2θ 2 (9a) (9b) (9c) A 1A 1, A 1A 2, A 2A 2 population genetics A 1 A 2 p,q A 1A 1, A 1A 2, A 2A 2 p 2,2pq, q 2 HW HW HW

S6 V g V g = f 11y11 2 +2f 12y12 2 + f 22y22 2 (10) V a = f 11(2θ 1) 2 +2f 12(θ 1 + θ 2) 2 + f 22(2θ 2) 2 = p 2 (2θ 1) 2 +2pq(θ 1 + θ 2) 2 + q 2 (2θ 2) 2 =2pqθ 2 (6) (11) 2.2 1932 The genetical interpretation of statistics of the third degree in the study of quantitative inheritance F. R. Immer Olof Tedin d,h, d d h F 2 F 3 F 3 9 2 F 2 F 3 11 3 d h F 2 2

S7 2 Kenneth Mather DNA g e p p = g + e (12) g e 0 σ 2 a i d i e 2 P 1 P 2 F 1,F 2,F 3 2 (12) A 2 A 1 A 2 3 A 1A 1 A 1A 2 A 2A 2 g 11, g 12, g 22 (g 11 g 22)/2 A a A A 1 A 2 A 1 A 2

S8 2.. a d g 11 = 100, g 12 = 90, g 22 =60. u = 80, a = 20, d =10 2 A 1 A 1 A 2 a i A 1 A 2 a i g 12 1 (g11 + g22) A 2 d A 0 d A =0 A d A < a A d A = a A d A > a A 2 P 1 P 2A, B 2 A, B a A, a B d A, d B F 1 A 1A 1B 1B 1 u + a A + a B (13a) A 1A 2B 1B 2 u + d A + d B (13b) A 2A 2B 2B 2 u a A a B (13c) u u

S9 u k (a)= (d)= (13a,b,c) kx i=1 kx i=1 a i d i (14a) (14b) A 1A 1B 1B 1 u +(a) (15a) A 1A 2B 1B 2 u +(d) (15b) A 2A 2B 2B 2 u (a) (15c) A B (k =2)F 2 9 A 1A 1B 1B 1, A 1A 1B 1B 2, A 1A 1B 2B 2, A 1A 2B 1B 1, A 1A 2B 1B 2, A 1A 2B 2B 2, A 2A 2B 1B 1, A 2A 2B 1B 2, A 2A 2B 2B 2 1:2:1:2:4:2:1:2:1 M g[f 2]=(1/16)A 1A 1B 1B 1 +(1/8)A 1A 1B 1B 2 + +(1/16)A 2A 2B 2B 2 =(1/16)(u + a A + a B)+(1/8)(u + a A + d A)+ +(1/16)(u a A a A) = u +(1/2)d A +(1/2)d B = u +(1/2)(d) (16) (a) (d) (12) V P = V G + E (17) V G E F 2 A (1/4)A 1A 1 :(1/2)A 1A 2 :(1/4)A 2A 2 V G[F 2]=(1/4)a 2 +(1/2)d 2 +(1/4)( a) 2 ((1/4)a +(1/2)d (1/4)a) 2 =(1/2)a 2 +(1/4)d 2 (18)

S10 i a i d i 2 A,D A = D = F 2 V P [F 2] kx i=1 kx i=1 a 2 i d 2 i (19a) (19b) V P [F 1 2]= 2 A + 1 4 D + E (20) E A D F 3 P 1 BC 1 P 2 BC 2 V P [F 3]=(3/4)A +(3/16)D + E (21) V P [BC 1]+V P [BC 2]=(1/2)A +(1/2)D +2E (22) F 2 F 3 F 2 F 3 F 2 P 1,P 2 F 1 V G =0, V P = E A,D E 3 A D V P A,D,E V P = c 1A + c 2D + E (23) c 1, c 2 F 2 c 1 =1/2, c 2 =1/4 h 2 B =(c 1A + c 2D)/(c 1A + c 2D + E) (24) h 2 N = c 1A/(c 1A + c 2D + E) (25) 2002

S11 Anderson and Kempthorne 1954 1972 3. 3.1 3.2 1918 1932 294 2 1949 Biometrical Genetics 2 17 polygenic system 1

S12 2 3 Jay L. Lush Animal Breeding Plans 1937 Oscar Kempthorne Introduction to Genetic Statistics 1957Douglas Scott Falconer Introduction to Quantitative Genetics1961 Hayman (1954a,b) Griffing (1956) Finlay Wilkinson (1963) 1950 60 3.3 1930 50 1 1970 4. DNA QTL 4.1 2

S13 4.2 AABB aabb F 1 AB ab Ab ab 0 0.5 A B 2 DNA 1920 1960 4.3 DNA QTL 1980 RFLPRAPD AFLP SSR DNA DNA DNA DNA DNA DNA 1989 Lander Botstein Interval Mapping Quantitative Trait Locus QTL QTL QTL QTL DNA QTL QTL QTL QTL

S14 QTL QTL 4.4 QTL QTL 2000 2 F 2 QTL QTL 1 Q 2 A, B A, Q, B 3 AAQQBB, aaqqbb F 1 AQB/aqb / AQB aqb A Q Q B r 1, r 2 A B r 1+2 r 1 r 2 r 1 F 2 AABB, AABb, AAbb, AaBB, AaBb, Aabb, aabb, aabb, aabb 9 1 9 Q QQ, Qq, qq 1 3 F 2 i Q j p ij 1 r 1, r 2, r 1+2 Q a,d QQ,Qq,qq 1. 2 i QTL Q 1 Q 1, Q 1 Q 2, Q 2 Q 2 p ij (F 2 ) i: Q 1 Q 1 (p i1 ) Q 1 Q 2 (p i2 ) Q 2 Q 2 (p i3 ) 1: A 1 A 1 B 1 B 1 q1 2 2 q 1 q 2 q2 2 2: A 1 A 1 B 1 B 2 q 1 q 3 q 1 q 4 + q 2 q 3 q 2 q 4 3: A 1 A 1 B 2 B 2 q3 2 2 q 3 q 4 q4 2 4: A 1 A 2 B 1 B 1 q 1 q 4 q 1 q 3 + q 2 q 4 q 2 q 3 5: A 1 A 2 B 1 B 2 z 1 q 1 q 2 + z 2 q 3 q 4 z 1 (q1 2 + q2 2 )+z 2(q3 2 + q2 4 ) z 1 q 1 q 2 + z 2 q 3 q 4 6: A 1 A 2 B 2 B 2 q 2 q 3 q 1 q 3 + q 2 q 4 q 1 q 4 7: A 2 A 2 B 1 B 1 q4 2 2 q 3 q 4 q3 2 8: A 2 A 2 B 1 B 2 q 2 q 4 q 1 q 4 + q 2 q 3 q 1 q 3 9: A 2 A 2 B 2 B 2 q2 2 2 q 1 q 2 q1 2 q 1 =(1 r 1 r 2 + r 12 )/(1 r 1+2 ) q 2 = r 12 /(1 r 1+2 ) q 3 =(r 2 r 12 )/r 1+2 (r 12 =2r 1+2 r 1 r 2 ) q 4 =(r 1 r 12 )/r 1+2 z 1 =(1 r 1+2 ) 2 /{(1 r 1+ ) 2 + r 2 1+2} z 2 =1 z 1 p i1 + p i2 + p i3 =1 (i =1, 2,...,9)

S15 u + a, u + d, u a u e e 0 σ 2 QQ,Qq,qq y QQ: φ 1 = 1 e (y u a)2 2σ 2 (26a) 2π Qq : φ 2 = 1 e (y u d)2 2σ 2 2π qq: φ 3 = 1 e (y u+a)2 2σ 2 2π (26b) (26c) i Q 1 QQ y p i1ϕ 1 i y Q QQ,Qq,qq z 1,z 2,z 3 z 1 + z 2 + z 3 =1 QQ : z 1 = p i1ϕ 1/(p i1ϕ 1 + p i2ϕ 2 + p i3ϕ 3) Qq : z 2 = p i2ϕ 2/(p i1ϕ 1 + p i2ϕ 2 + p i3ϕ 3) qq : z 3 = p i3ϕ 3/(p i1ϕ 1 + p i2ϕ 2 + p i3ϕ 3) (27a) (27b) (27c) z 1,z 2,z 3 n 9Y Y i L (p i1φ ij1) z ij1 (p i2φ ij2) z ij2 (p i3φ ij3) z ij3 (28) i=1 j=1 z ij1 i j j =1,...,n iq QQ p i1φ ij1,p i2φ ij2,p i3φ ij3 i j QTL Q 1Q 1, Q 1Q 2, Q 2Q 2 (28) Q 3 n 9Y Y i L (p i1φ ij1 + p i2φ ij2 + p i3φ ij3) (29) i=1 j=1 QTL u a d σ 2 4 u QTL 1 QTL QTL QTL L û,â, ˆd, ˆσ 2 log L 1 H 0 :û = u 0,â =0, ˆd =0, ˆσ 2 = σ0 2 log L 0

S16 3. QTL LOD 68cM 17 A Q LOD 33cM LOD =log 10 L log 10 L 0 (30) EM QTL 1 cm LOD LOD QTL 3 QTL QTL QTL DNA QTL 5. DNA Anderson, V.L. and Kempthorne, O. (1954). A model for the study of quantitative inheritance. Genetics, 39: 883 898. Falconer, D.S. (1961). Introduction to Quantitative Genetics. Oliver and Boyd, Edinburgh.

S17 Finlay, K.W. and Wilkinson, G.N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14: 742 754. Fisher, R.A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh: Earth Sciences, 52: 399 433. Fisher, R.A, Immer, F.R. and Tedin, O. (1932). The genetical interpretation of statistics of the third degree in the study of quantitative inheritance. Genetics, 17: 107 124. Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9: 463 493. Hayman, B.I. (1954a). The analysis of variance of diallel tables. Biometrics, 10: 235 244. Hayman, B.I. (1954b). The theory and analysis of diallel crosses. Genetics, 39: 789 809. Kempthorne, O. (1957). Introduction to Genetic Statistics. Iowa State Univ. Press. Iowa. (1960)... Lander, E.S. and Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121: 185 199. Lush, J.L. (1937). (1 st ), (1943) (2 nd ). Animal Breeding Plans. Iowa State Univ. Press. Ames, Iowa. (1972). 2., 22: 147 152. (2000)... (2002)...