t.dvi
|
|
|
- ゆうりゅう すみだ
- 6 years ago
- Views:
Transcription
1 T ( ) (a) (b) (c) (d) SVD Tikhonov 3 (e) 1: ( ) 1
2 Objective Output s Known system p(s) b = p(s)+n noise n 2: 2 / s(i, j) (0 i<m,0 j<n) = s MN 2 s p p(s) n p(s)+n s p CCD A/D n ( ) p(s)+n 2.2 s(x, y) (Point Spread Function : PSF) k(x, y) b(x, y) =k(x, y) s(x, y) = k(x u, y v)s(u, v)dudv = k(u, v)s(x u, x v)dudv (1) 2
3 (1) b(i, j) = k(p, q)s(i p, j q) (2) p q k(x, y) s R MN PSF k(x, y) P R MN MN b R MN b = P s (3) b = P s + n (4) n 2.3 (4) P, s = P 1 b = s + P 1 n (5) P (3) ŝ = argmin P s b 2 (6) s P P (3) ŝ = P b (7) ( ) P P = P 1 ŝ = ŝ + P n (8) 3
4 2 P n P n ( ) (Ill-posed inverse problem) (8) 2.4 P (Singular Value Decomposition : SVD) P R p q P = UΣV T (9) U =[u 1 u p ] R p p, V =[v 1 v q ] R q q (10) U T U = I p, V T V = I q Σ ( ) σ 1 σ 2... σ r 0, (r = min(p, q)) (11) ( ) σ σ Σ= σ p 0 0 Rp q (p<q ) (12) P σ σ P =[u 1 u q ] σ p 0 0 v 1. v q = p σ i u i v T i (13) σ i u i v T i P U V P =(UΣV T ) =(V T ) Σ U =(V T ) 1 Σ U 1 = V Σ U T (14) 4
5 Σ 1/σ /σ Σ = 0 0 1/σ p R q p (p<q ) (15) P (13) P = r v i u T i σ i (r = min(p, q)) (16) v i u T i (8) ŝ ŝ = ŝ + r u T i n σ i v i (r = min(p, q)) (17) (11) (17) P cond(p )=σ 1 /σ r (18) 2.5 (Truncated Singular Value Decomposition : TSVD ) TSVD θ>0 k P σ 1... σ k θ σ k+1...σ r (19) P k = k v i u T i σ i (20) 5
6 ŝ k = P k b = P k (P s + n) (21) k Tikhonov Tikhonov ( (6)) ( ) E(s) = 1 2 P s b 2 + λ2 2 s 2 (22) ŝ = argmin E(s) (23) s λ (22) 2 ( 1 ) (23) ŝ E(s) (gradient) 0 n ( σ 2 ) ŝ λ = argmin E(s) = i vi u T i s σi 2 + b = VT 1 Σ U T b (24) λ2 σ i U V P P = UΣV T T 1+ λ2 0 σ 1 2 T =... (25) 0 1+ λ2 σn 2 ( ) Tikhonov ŝ λ (24) σ2 i σi 2+λ2 σ i >> λ 1 σ i << λ 0 λ 6
7 2.7 E D (s) = 1 2 P s b λ2 2 Ds p p (26) p p- (2- ) x p =( i x i p ) 1/p (27) D s 1 ( ) 2 D 1 ( ) p =1 Total Variation (TV) E D (s) s ( B ) 3 web (Moodle) Moodle B(T-1) ( ) [email protected] ( A-F) ( G-I J-L) 3 10/11, 13 7
8 10/18 (3F902) 11/1 1 A, B (manaba) 12/8 2 C, D, E (manaba) 2/14 3 F (manaba) 3.1 OpenCV OpenCV[1-4] OpenCV - GUI OpenCV Macintosh Moodle OpenCV 3.2 C or C++? OpenCV C C++ OpenCV C version 2 C++ C C C C, C++ C C OpenCV 8 PNG PGM(Portable Gray Map) JPEG GIMP netpbm 8
9 [1] OpenCV ( [2] OpenCV OpenCV [3]G.Bradski,A.Kaehler: OpenCV - [4] OpenCV ( OpenCV A OpenCV Moodle 2 (sample1.c, sample2.c) 2 (1) (2) (3) ( 2 ) (4) (5) OpenCV OpenCV (1) (2) (3) (4) (5) (1) (4) (6) (4) PNG PGM 4.2 B s(x) s(x) (Signal to Noise Ratio : SNR) Peak Signal to Noise Ratio : PSNR ( ) M 2 PSNR(dB) =10log 10 1 N x s(x) (28) s (x) 2 M, N 9
10 $ psnr < > < > 2 PSNR GIMP 4.3 C ( ) PSF OpenCV 0 PSF (1) (2) 2 D PSF p(x) = p 11 p 12 p 13 p 21 p 22 p 23 p 31 p 32 p 33 R s(x) b(x) M N =3 3(pixel) (3) s R 9, b R 9 PSF P R 9 9 PSF P 0 2. PSF ( ) C 4.4 E PSF PSF n (n =1...7) 0 10
11 $ degrade < > <PSF > <0 (1-7)> < > PSF PSF 4.5 A-E F P F 32 32(pixel) PSF n =0, 1, 4 3 (n =0 ) 6 P ( (8)) PSNR PSF PSF ( ) 1 ( ) ( ) OpenCV G P (MN) 2 A PSF 1, (pixel) 6 PSF A 11
12 A PSNR H TSVD θ PSNR PSNR PSNR θ (k) PSF 2 θ F G PSF I Tikhonov λ PSNR PSNR λ PSF 2 λ F G PSF ( ) J ( PSF ) ( ) K L Total Variation PSNR B 12
13 A PSF M,N P (MN) 2 M = N = 50(pixel) ( ) PSF k(x, y) =r(x)c(y) (29) PSF K = cr T = c 1 c 2. c m [ ] r 1 r 2 r n (K R m n, c R m, r R n ) (30) PSF K = cr T = c 1 c 2 c 3 [ r 1 r 2 r 3 ] = c 1 r 1 c 1 r 2 c 1 r 3 c 2 r 1 c 2 r 2 c 2 r 3 c 3 r 1 c 3 r 2 c 3 r 3 (31) PSF S R M N r c N N M M (Toeplitz) r 2 r 1 c 2 c 1 r 3 r 2 r 1 c 3 c 2 c 1 r 3 r 2 r 1 c 3 c 2 c 1 A r = R N N, A c = R M M r 3 r 2 r 1 c 3 c 2 c 1 r 3 r 2 r 1 c 3 c 2 c 1 r 3 r 2 c 3 c 2 (32) PSF (c 2, r 2 ) PSF ( ) B R M N B = A c SA T r (33) 13
14 (33) SVD Ŝ = A 1 c B(A T r ) 1 = V c Σ 1 c Uc T BU r Σ 1 r Vr T (34) SVD A c = U c Σ c V T c, A r = U r Σ r V T r (3) PSF (34) TSVD Tikhonov Σ c Σ r B Total Variation H Total Variation B.1 Total Variation (26) p =1 E D (s) = 1 2 P s b λ2 2 Ds 1 (35) s Tikhonov (1) E D (s) (2) s (1) s s(t +1)=s(t) η E D(s) (36) s η s B.2 Ds 1 D 14
15 s(x, y) d(x, y) =[ x s(x, y), y s(x, y)]t =[s x (x, y),s y (x, y)] T (37) Ds 1 d(x, y) 1 Ds 1 = s x (x, y) + s y (x, y) (38) x y x y s x (x, y) = s(x +1,y) s(x, y) s y (x, y) = s(x, y +1) s(x, y) [ ] [ 1, 1], 1 1 (PSF) L x, L y Ds 1 = L x s 1 + L y s 1 (39) E D (s) = 1 2 P s b λ2 2 L xs 1 + λ2 2 L ys 1 (40) E PSF L x, L y B.3 s Ds 1 s s E d (s) = s E d(s) 2 2 Tikhonov 1 s R { s s = 1 (s>0) 1 (s<0) = sign(s) (41) sign(s) s ±1 s R, a R s as = a (s >0) (a >0) a (s <0) (a >0) a (s >0) (a <0) a (s <0) (a <0) = a sign(as) (42) 15
16 s R n [ s s 1 = s 1 n s i... s n T n s i ] =[sign(s 1 )... sign(s n )] T = Sign(s) (43) Sign(s) s ±1 Sign([3 4] T )=[+1 1] T. s R n, A =[a ij ] R m n s As 1 = = m ( s 1 n a ij s j )... j=1 [ m a i1 sign(a i1 s 1 )... s n ( m n a ij s j ) j=1 m a in sign(a in s n ) = A T Sign(As). (44) T ] T B.4 s E D (s) s E D (s) =P T P s P T b + λ2 2 (LT x Sign(L xs)+l T y Sign(L ys)) (45) Total Variation TSVD Tikhonov 16
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
Microsoft Word - optical.doc
1 2 3 CCD () () 4 5 6 7 ) ) 8 9 10 l l l l 10-9 11 12 13 14 15 16 w h f = = W H L f W f h f 6.6 f = = H L 500 2, 000 17 Ec T R Ec = 2 2 4 F ( m + 1) Es a b m = f V m = = L f m = a f f H = C F B( H + f
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
untitled
1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
V T n n = A r n A n r n U V m m n n UT U = I V T V = I : A = A = UΣV T A T AV = VΣ T Σ : AB T = B T A T V A T A V A V T V = I 3 V A V T V = I : A AK =
PLS Janes PLS PLS PCR MLR PCA singular value decomposition : m n A 3 A = U m n m m Σ m n VT n n U left singular matrix V Σ U = m m A m r Σ = m n σ σ r A m m r V T n n = A r n A n r n U V m m n n UT U =
213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................
1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )
(Communication and Network) 1 1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) p i = P (X n = s i )
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
B ver B
B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+
5 5. 5.. a a n n A m n a m a n = a m+n (a m ) n = a mn 3 (ab) n = a n b n a n n 0 3 3 0 = 3 +0 = 3, 3 3 = 3 +( ) = 3 0 3 0 3 3 0 = 3 3 =, 3 = 30 3 = 3 0 a 0 a`n a 0 n a 0 = a`n = a n a` = a 83 84 5 5.
2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+
R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x
24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12
: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =
1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
Dynkin Serre Weyl
Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................
1 6 1.1............................. 6 1.2.............................. 6 2 8 2.1 (Digital Watermark).................... 8 2.1.1....................
2004 2005 2 2 1G01P095-6 1 6 1.1............................. 6 1.2.............................. 6 2 8 2.1 (Digital Watermark).................... 8 2.1.1........................ 8 2.1.2........................
,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,
14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................
1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D
1W II K200 : October 6, 2004 Version : 1.2, [email protected], http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, [email protected] TA Talor Jacobian 4 45 25 30 20 K2-1W04-00
Microsoft Word - 11問題表紙(選択).docx
A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),
1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
16 B
16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..
[ ] Table
[] Te P AP OP [] OP c r de,,,, ' ' ' ' de,, c,, c, c ',, c mc ' ' m' c ' m m' OP OP p p p ( t p t p m ( m c e cd d e e c OP s( OP t( P s s t (, e e s t s 5 OP 5 5 s t t 5 OP ( 5 5 5 OAP ABP OBP ,, OP t(
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
Jacobson Prime Avoidance
2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................
曲面のパラメタ表示と接線ベクトル
L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s
08-Note2-web
r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink
p = mv p x > h/4π λ = h p m v Ψ 2 Ψ
II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R
II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
dvipsj.8449.dvi
9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b
K E N Z OU
K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
数値計算:有限要素法
( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
ばらつき抑制のための確率最適制御
( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y
φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m
2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
l t a2 b c f g or t a2 b c f a2 b c f or l t a2 b c f g t a2 b c f g l t
o r lt LONDON 70120-770-361 1 BOOK a2 b c f a2 b c f g t MAP -C2 l t a2 b c f g or t a2 b c f a2 b c f or l t a2 b c f g t a2 b c f g l t a2 b c f a2 b c f g a2 b c f a2 b c f o a2 b c f g a2 b c f lr
? FPGA FPGA FPGA : : : ? ( ) (FFT) ( ) (Localization) ? : 0. 1 2 3 0. 4 5 6 7 3 8 6 1 5 4 9 2 0. 0 5 6 0 8 8 ( ) ? : LU Ax = b LU : Ax = 211 410 221 x 1 x 2 x 3 = 1 0 0 21 1 2 1 0 0 1 2 x = LUx = b 1 31
( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos()
4 2010.6 1 :, HP.. HP 4 (, PGM/PPM )., python,,, 2, kadai4,.,,, ( )., ( ) N, exn.py ( 3 ex3.py ). N 3.., ( )., ( ) N, (exn.txt).. 1 ( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x (
(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w
S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ
p q p q p q p q p q p q p q p q p q x y p q t u r s p q p p q p q p q p p p q q p p p q P Q [] p, q P Q [] P Q P Q [ p q] P Q Q P [ q p] p q imply / m
P P N p() N : p() N : p() N 3,4,5, L N : N : N p() N : p() N : p() N p() N p() p( ) N : p() k N : p(k) p( k ) k p(k) k k p( k ) k k k 5 k 5 N : p() p() p( ) p q p q p q p q p q p q p q p q p q x y p q
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
