19 /

Similar documents
Andreev Josephson Night Club

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

本文/目次(裏白)

TOP URL 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

プログラム

第86回日本感染症学会総会学術集会後抄録(I)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

量子力学 問題

IA

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

構造と連続体の力学基礎

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

: , 2.0, 3.0, 2.0, (%) ( 2.

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

0406_total.pdf

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

30

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Note.tex 2008/09/19( )

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

基礎数学I

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


量子力学A

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ


2000年度『数学展望 I』講義録

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

201711grade1ouyou.pdf

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

all.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

高知工科大学電子 光システム工学科

Z: Q: R: C: sin 6 5 ζ a, b

Mott散乱によるParity対称性の破れを検証

( ) ( )

QMII_10.dvi

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

TOP URL 1

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

第10章 アイソパラメトリック要素

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

LLG-R8.Nisus.pdf

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


TOP URL 1

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

総研大恒星進化概要.dvi

Transcription:

19 /

1 1.1............................... 1. Andreev............................... 3 1.3..................................... 3 1.4..................................... 4 / 5.1...................................... 5. DBdG /....... 7.3............................ 8.4............................ 15.5................................. 4.6 Andreev........................... 8 3 / 3 3.1 DBdG /....... 3 3........................................... 33 4 36 37 Dirac-Bogoliubov-de Gennes DBdG.............. 37 1

1 1.1 1911 H.K.Onnes (Meissner ) (Josephson ) 1957 Bardeen Cooper Schrieffer BCS Cooper 1959 Bogoliubov de Gennes Cooper BCS 1 Bogoliubov-de Gennes BdG BdG BdG Bogoliubov-de Gennes / Andreev 1.1 Andreev Cooper Cooper Andreev Andreev BdG Josephson π /

E 1.1: Andreev 1. Andreev 1.1 / Andreev / Andreev Beenaer 3 1.4 Andreev (a) / Andreev (b) / Andreev Andreev (a) (b) e h e h x y 1.: (a) / Andreev (b) / Andreev 1.3 / / 3

Andreev 1.4 / 3 / 4 DBdG 4

/ /.1. DBdG.3.4 DBdG.5.6 Andreev.1 4, 5.1(a) 6 A B σ π 1.1(b) 6 Γ 6 K K 6 M Fermi π π 1 K K Fermi E = E F = K K. K Γ M K π.1: (a) (b) 1 5

.: π K K Dirac K ) γ (ˆ σ F K (r) = ɛf K (r) (.1) K γ (ˆ σ ) F K (r) = ɛf K (r) (.) F (r) A B ( ) ( ) F K FA K F (r) =, F K A K (r) = (.3) FB K FB K σ = (σ x, σ y ) ( ) ( 1 i σ x =, σ y = 1 i ) (.4) ˆ γ ɛ F K (r) F K (r) exp (i r) (.5) ɛ (±) () = ±γ x + y (.6) K K Dirac v = γ (.7) 6

6, 7 8. DBdG /.3 x y x > x > x < x > / x < y x.3: / N S Dirac-Bogoliubov-de Gennes DBdG DBdG H + H + u v = E u v (.8) H + = iσ µ + U = i (σ x x + σ y y ) µ + U (.9) { e iφ if x > (r) = if x < (.1) 7

{ U if x > U (r) = (.11) if x < U U µ, (.1).3 DBdG H + u u = E (.13) H + v v (u, v) exp (i x x + i y y) µ E ( x i y ) ( x + i y ) µ E = (.14) E = µ ± x + y = µ ± = E± e (.15) µ E ( x i y ) ( x + i y ) µ E = (.16) E = µ ± = E h ± (.17).4 E = E+ e = 1 e i xx+i y y u 1 u 1 e ia (.18) E = E e u 1 u = 1 1 e ia e i xx+i y y (.19) e ia = x + i y x + y (.) 8

E µ F F µ.4: 1. E > µ E = E+ e = µ + E + µ = x + y (.1) x + y = E + µ > (.) ( ) E + µ x = y > (.3) q y > (.4) E + µ ( ) q 1 E + µ cos α (.5) E + µ sin α q E + µ x = = E + µ e ia = x + i y x + y = E+µ = e iα = + iq + q = E+µ (.6) cos α > (.7) E+µ ( E+µ E+µ cos α + i sin α = cos α + i sin α 9 E+µ cos α + i sin α ) cos α + ( ) E+µ sin α (.8)

= 1 u 1 u 1 e iα x = = E + µ + iq + q e ia = x + i y = x + y = E+µ E+µ cos α + i E+µ sin α e ix+iqy (.9) cos α < (.3) = cos α + i sin α = e iα (.31) = 1 u 1 u 1 e iα e ix+iqy (.3). E < µ E = E e = µ E + µ = x + y (.33) x + y = E + µ > (.34) ( ) E + µ x = y > (.35) x = = E + µ e ia = x + i y x + y E+µ = cos α < (.36) = + iq + q cos α + i E+µ sin α = cos α + i sin α E+µ = e iα (.37) 1

= 1 u 1 u 1 e iα x = = E + µ e ia = x + i y x + y = E+µ + iq = + q E+µ e ix+iqy (.38) cos α > (.39) E+µ cos α + i sin α = cos α + i sin α = e iα (.4) = 1 u 1 u Ψ e+ N = 1 1 e iα e ix+iqy (.41) (1)E > µ ()E < µ e iα/ e iα/ Ψ e N = 1 e iα/ e iα/ eix+iqy (.4) e ix+iqy (.43) E = E+ h v 1 v = 1 e ia 1 e i xx+iqy (.44) E = E h v 1 v = 1 1 e ia e i xx+iqy (.45) e ia = x + i y x + y (.46) 11

1. E > µ E = E+ h = µ + E µ = x + y (.47) x + y = E µ > (.48) ( ) E µ x = y > (.49) E µ ( ) q 1 E µ cos α (.5) E µ sin α q E µ x = = E µ = iq + q E µ (.51) cos α > (.5) e ia = x i y x + y E µ = cos α i E µ sin α = cos α i sin α = e iα (.53) = 1 v 1 v e iα / e iα / e i x+iqy (.54) x = = E µ e ia = x i y x + y E µ = = iq + q E µ cos α < (.55) cos α + i E µ sin α = cos α i sin α = e iα (.56) 1

= 1 v 1 v e iα / e iα / e i x+iqy (.57). E < µ E = E h = µ E µ = x + y (.58) x + y = E µ > (.59) ( ) E µ x = y > (.6) x = = E µ = + iq + q E µ cos α < (.61) e ia = x + i y x + y E µ = cos α + i E µ sin α = cos α i sin α = e iα (.6) = 1 v 1 v e iα / e iα / e i x+iqy (.63) x = = E µ e ia = x + i y x + y = + iq + q E µ cos α > (.64) = E µ cos α + i E µ sin α = cos α i sin α = e iα (.65) 13

= 1 e i x+iqy v 1 v e iα / e iα / (.66) (1)E > µ ()E < µ Ψ h+ N = 1 x+iqy e iα / ei (.67) e iα / Ψ h N = 1 e iα / e iα / e i x+iqy (.68) Ψ e+ N = 1 e iα/ e iα/ eix+iqy (.69) Ψ e N = 1 e iα/ e iα/ e ix+iqy (.7) Ψ h+ N = 1 Ψ h N = 1 e iα / e iα / e iα / e iα / ei x+iqy e i x+iqy (.71) (.7) 14

5.78 5.15 q < q c = E + µ (.73) q < q c = E µ (.74) q = E + µ sin α (.75) Andreev ( ) E µ α < α c = arcsin E + µ α c (.76).4 DBdG H + H + u v = E u v (.77) H + = iσ µ + U = i (σ x x + σ y y ) µ + U (.78) (u, v) exp (i x x + i y y) u = (u 1, u ) v = (v 1, v ) µ + U E ( x i y ) ( x + i y ) µ + U E = (.79) µ U E ( x i y ) ( x + i y ) µ U E E S ± = E = + (µ U ± ) E S ± (.8) + ξ ±, ξ ± = ± (µ + U ) (.81).5 U µ, E = E S E = ES a e ( ) ia E S + ξ b ( ) c E S + ξ e ia (.8) d 15

E U + µ >>.5: (1) E < Ω E (.83) ( ) E Ω = i 1 (.84) E cos β (.85) 1 < E/ < 1 < β < π sin β > ( ) E Ω = i 1 = i sin β (.86) E = + ξ (.87) ( ) E ξ = ± E = ±i 1 = ±i sin β = (µ + U ) (.88) 16

= µ + U ± i sin β (.89) + ( ) µ + x U ± i sin β = q = (µ + U ) sin β () (µ + U ) () q ± i (µ + U ) sin β () q ± i (µ + U ) sin β () (.9) U y q (.91) (µ + U ) () q (.9) κ (µ + U ) () sin β (.93) x = ( 1 ± i ) (µ + U ) () sin β (.94) x ± i (µ + U ) () sin β = ± iκ (.95) sin γ q µ + U, π < γ < π (.96) = µ + U ( q 1 µ + U ) = µ + U cos γ (.97) x κ 17

1. ( + iκ, q) κ e ia = x + i y x + y = = + iq + q = µ+u + i ( µ+u ) + ( µ+u q ) q µ+u cos γ + i sin γ cos γ + sin γ = eiγ (.98) a e ( ) ia E S + ξ e b ( ) iγ (E + i sin β) c E S + ξ e ia (E + i sin β) e iγ d (.99) a + b + c + d = ( E + sin β ) + ( ) E = + sin β + 1 = 4 (.1) ( ) a e iγ E b c 1 + i sin β ( ) E + i sin β e iγ e iφ = 1 d e iφ e iγ e iβ e iβ e iγ e iφ e iφ e iβ Ψ e+ S = 1 e iγ+iβ e iφ ei x κx+iqy e iγ iφ (.11) (.1). ( iκ, q) κ e ia = + iq + q = cos γ + i sin γ = e iγ (.13) 18

a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ e iβ iγ Ψ e S = 1 e iφ e iφ iγ e i x+κx+iqy (.14) (.15) 3. ( + iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.16) ( ) a e iγ E b c 1 i sin β ( ) e iγ e iβ E i sin β e iγ e iφ = 1 e iβ e iγ e iφ d e iφ Ψ h+ S = 1 e iφ e iβ e iβ iγ e iφ e iφ iγ e i x κx+iqy (.17) (.18) 4. ( iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.19) 19

a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ Ψ h S = 1 e iγ iβ e iφ e i x+κx+iqy e iγ iφ (.11) (.111) () E > E = E S = + ( µ U ) (.11) ( µ U ) = E > (.113) = ± E + µ + U (.114) + ( x + y µ + U ± ) E = (.115) x = ( µ + U ) y ± (µ + U ) E () + E () = ± (µ + U ) E () + E () (.116) 1 ± (µ + U ) E () = ± (µ + U ) E () (.117) ( ) E cosh δ δ > ( ) E δ = arcosh (.118)

cosh δ sinh δ = 1 (.119) E = ( E ) 1 = sinh δ (.1) = + (µ + U ) sinh δ () (.11) cosh δ = cos (iδ) (.1) sinh δ = i sinh (iδ) (.13) iδ = β (.14) cosh δ = cos β (.15) sinh δ = i sinh β (.16) = + (µ + U ) sinh δ () = + i (µ + U ) sin β () = + iκ (.17) E < E < x κ 1. ( + iκ, q) κ e ia = x + i y x + y = = + iq + q = µ+u + i ( µ+u ) + ( µ+u q ) q µ+u cos γ + i sin γ cos γ + sin γ = eiγ (.18) 1

E a b c 1 ( + sinh ) δ E + sinh δ e iγ e iφ = 1 d e iφ e iγ e iβ 1 e iβ e iγ e iφ e iφ e iγ e iβ Ψ e+ S = 1 e iγ+iβ e iφ ei x κx+iqy e iγ iφ cosh δ + sinh δ (cosh δ + sinh δ) e iγ e iφ e iφ e iγ (.19) (.13). ( iκ, q) κ e ia = + iq + q = cos γ + i sin γ = e iγ (.131) a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ e iβ iγ Ψ e S = 1 e iφ e iφ iγ e i x+κx+iqy (.13) (.133) 3. ( + iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.134)

a e iγ (cos β i sin β) e iγ e iβ b c 1 (cos β i sin β) e iγ e iφ = 1 e iβ e iγ e iφ d e iφ e iφ e iβ e iβ iγ Ψ h+ S = 1 e iφ e iφ iγ e i x κx+iqy (.135) (.136) 4. ( iκ, q) κ e ia = iq + q = cos γ i sin γ = e iγ (.137) a e iγ e iβ b c 1 e iβ e iγ e iφ d e iφ e iβ Ψ h S = 1 e iγ iβ e iφ e i x+κx+iqy e iγ iφ (.138) (.139) U µ, γ = arcsin q/ (U + µ) e iβ Ψ e+ S = 1 e iβ e iφ ei x κx+iqy (.14) e iφ 3

Ψ h+ S = 1 e iβ e iβ e iφ e iφ e i x κx+iqy (.141).5 / Andreev ψ N = Ψ e+ N + rψe N + r AΨ h N (.14) U µ, E = E S ψ S = aψ e+ S + bψh+ S (.143) x = Ψ e+ N + rψe N + r AΨ h N = aψe+ S + bψh+ S (.144) Ψ h+ N + r Ψ h N + r AΨ e S = a Ψ e+ S + b Ψ h+ S (.145) Andreev { e iφ X 1 cos α if α < α c r A = (.146) if α > α c α c = arcsin ( ) E µ E + µ (.147) ( ) ( ) α r = ix cos 1 + α α α β sin i sin β sin (.148) { r A e iφ X 1 cos α if α < α c = (.149) if α > α c 4

( ) ( ) α r = ix cos 1 + α α α β sin + i sin β sin ( ) ( ) α α α + α X = cos β cos + i sin β cos (.15) (.151) x vx+ e = 1 E+ e = v + q = v E + µ = v cos α (.15) vx e = 1 E e = v = v cos α (.153) + q vx+ h = 1 E+ h vx h = 1 E h = v + q = v E µ = v cos α (.154) = v + q = v cos α (.155) ( ) ( ) vx e r = α cos r = r = + α α α ix 1 β sin i sin β sin (.156) r A = r = v e x+ vx h vx+ e vx h vx+ h r A = { cos α cos α r A = e iφ X 1 cos α cos α if α < α c if α > α c (.157) ( ) ( ) α r = r = ix cos 1 + α α α β sin + i sin β sin r A = vx e vx+ h r A = ( ) r r A R = r A r (.158) cos α cos α r A = e iφ r A (.159) (.16) E < unitary ( RR ) = δ nm nm E > unitary ( ) q α = arcsin (.161) E + µ ( ) q α = arcsin E µ µ µ 5 (.16)

1. µ ( q α = arcsin µ ), α = arcsin ( ) q µ (.163) α = α (.164). µ α = arcsin ( ) q, α = arcsin E ( ) q E (.165) α = α (.166) µ α = α Andreev µ α = α Andreev.6.7 E E U + µ >>, E r µ r A F F.6: µ ( Andreev ) Andreev r A (E, α) = r A (E, α) = e iφ cos α (E/ ) cos α + ζ, if µ (.167) e iφ cos α E/ + ζ cos α, if µ (.168) 6

E E U + µ >> r r A µ F F.7: µ ( Andreev ) r (E, α) = iζ sin α (E/ ) cos α + ζ, if µ (.169) r (E, α) = i (E/ ) sin α E/ + ζ cos α, if µ (.17) ( ) E 1 if E > ζ = ( ) (.171) E i 1 if E < E < r + r A = 1 α = r A = 1 Blonder-Tinham-Klapwij BTK I αc V = g ( (V ) 1 r (ev, α) + r A (ev, α) ) cos αdα, (.17) g (V ) = 4e h N (ev ), (µ + E) W N (E) =, α c = arcsin π ( ) E µ E + µ (.173) g N W y µ µ α c = arcsin (1) = π (.174) α < π (.175) 7

µ ev/ x < 1 I V 1 g (V ) = = π/ { 4 ( 1 r (ev, α) + r A (ev, α) ) cos αdα if x = 3 1 + ( 1 1 ) 1 ln x 1 if < x < 1 x x x x+1 (.176) ev/ x 1 I V 1 g (V ) = = π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα { if x = 1 π x 1 + x 1 ln x x x+1 if x > 1 x 1 (.177) µ ev/ x < 1 I V 1 g (V ) = = π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα { if x = 1 x 1 if < x < 1 (.178) 1 x + 1 x (1 x ) 1 x ln 1 x +1 ev/ x 1 I V 1 g (V ) = = π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα 4 if x = 1 3 ( ) πχ + 4χ πχ 3 + 4χ χ 1 arcsin if x > 1 χ 1 χ (.179) χ = x x 1 (.18).8.6 Andreev E = E e ± = µ ± (.181) E = E h ± = µ ± (.18) 8

( V ) 1 g I V µ << µ >> ( ) ev.8: µ Andreev µ Andreev 1. y vy e+ = 1 E e E+µ + q = v q x + q = v sin α = v sin α (.183) v e y v h+ y v h y = 1 E e q = v q = 1 E+ h q = v q = 1 E h q = v q E+µ E+µ x + q = v E+µ E µ x + q = v E µ E µ x + q = v E µ sin α = v sin α (.184) sin α = v sin α (.185) sin α = v sin α (.186).5 y 1. µ α = α Andreev hole y Andreev. µ α = α Andreev hole y Andreev α α Andreev Andreev 9

3 / 3 / / 3.1 DBdG / 3.1 / x < x < y x 3.1: / F S DBdG DBdG V ex (r) H + + V ex (r) H + + V ex (r) u v = E u v (3.1) H + = iσ µ + U = i (σ x x + σ y y ) µ + U (3.) V ex (r) = { if x > V ex if x < 3 (3.3)

(r) U (r) { e iφ if x > (r) = if x < U (r) = { U if x > if x < (3.4) (3.5) U µ, (3.6) (u, v) exp (i x x + i y y) µ E + V ex ( x i y ) ( x + i y ) µ E + V ex = (3.7) E = E e ± = µ + V ex ± (3.8) µ E + V ex ( x i y ) ( x + i y ) µ E + V ex = (3.9) E = E h ± = µ + V ex ± (3.1) 3. E µ +V ex µ +V ex 3.: Andreev V ex E E V ex (3.11) 31

α,, α, α α = arcsin = arcsin q E + µ V ex q E µ V ex, = E + µ V ex cos α, = E µ V ex cos α (3.1) / Andreev N ( ) ( ) α r = ix cos 1 + α α α β sin i sin β sin (3.13) { e iφ X 1 cos α cos α r A = if α < α c if α > α c (3.14) ( ) ( ) α α α + α X = cos β cos + i sin β cos (3.15) α c ( ) E µ Vex, α c = arcsin (3.16) E + µ V ex N (E) = µ + E V ex W π DBdG H + V ex (r) H + V ex (r) u v = E u v (3.17) E = E e ± = µ V ex ± (3.18) E = E h ± = µ V ex ± (3.19) 3.3 E E + V ex (3.) α,, α, q α = arcsin, = E + µ + V ex cos α E + µ + V ex α q = arcsin, = E µ + V ex cos α (3.1) E µ + V ex 3

E µ V ex µ V ex 3.3: Andreev φ φ + π (3.) φ Andreev { e i(φ+π) X 1 cos α cos α r A = if α < α c (3.3) if α > α c N N + (E) = µ + E + V ex W π α c ( ) E µ + Vex, α c+ = arcsin (3.4) E + µ + V ex 3. BTK I V = e h N s (ev ) s=±1 αc N s (E) = µ + E + sv ex W π ( 1 r (ev, α) + r A (ev, α) ) cos αdα, (3.5), α cs = arcsin ( ) E µ + svex E + µ + sv ex (3.6) s = ±1 Fermi µ 1. K K Fermi Fermi s = ±1 α α α = α (3.7) 33

.6 Andreev α cs α cs = arcsin (1) = π (3.8) I V = e h W π ( ev + V ex + ev V ex ) N s (E) = µ + E + sv ex W π π/, α cs = arcsin ( 1 r (ev, α) + r A (ev, α) ) cos αdα, ( ) E µ + svex E + µ + sv ex (3.9) (3.3) α = α / ev/ x < 1 π/ ( 1 r (ev, α) + r A (ev, α) ) cos αdα = { if x = 1 x 1 if < x < 1 1 x + 1 x (1 x ) 1 x ln 1 x +1 (3.31) ev/ x 1 π/ = ( 1 r (ev, α) + r A (ev, α) ) cos αdα 4 if x = 1 3 ( ) πχ + 4χ πχ 3 + 4χ χ 1 arcsin if x > 1 χ 1 χ (3.3) χ = x x 1 (3.33) ev > V ex ev + V ex + ev V ex = ev (3.34) < V ex ev + V ex + ev V ex = V ex (3.35) 34

/ < V ex Andreev 9 / V ex V ex = µ / (3.35) I V V ex (3.36) 35

4 / Fermi µ α α α = α Andreev < V ex µ 36

Dirac-Bogoliubov-de Gennes DBdG Fermi K K ψ (r, µ, α) = 1 } {F µ (r, α) e ik r + G µ (r, α) e ik r = 1 { Fµ (r, α) e ik r + G µ (r, α) e ik r} (1) ψ (r, ν, α) = 1 {F ν (r, α) e ik r + G ν (r, α) e ik r } () µ, ν = A, B (3) K = K K K ( ) F A (r, α) ˆF (r, α) = (4) F B (r, α) Ĝ (r, α) = ( G A (r, α) G B (r, α) ) (5) α, β =, (6) { Fµ (r, α), F ν (r, β) } + = δ µ,ν δ (r r ) δ α,β (7) {F µ (r, α), F ν (r, β)} + = (8) { Gµ (r, α), G ν (r, β) } + = δ µ,ν δ (r r ) δ α,β (9) {G µ (r, α), G ν (r, β)} + = (1) {F µ (r, α), G ν (r, β)} + = (11) { Fµ (r, α), G ν (r, β) } + = (1) δ µ,ν δ (r r ) = δ (r r ) (13) 37

{ ψµ (r, α), ψ ν (r, β) } + = δ µ,ν δ (r r ) δ α,β (14) {ψ µ (r, α), ψ ν (r, β)} + = (15) K K Hamiltonian Dirac Hamiltonian Ĥ + = iσ D µ = i (σ x D x + σ y D y ) µ (16) Ĥ = iσ D µ = i (σ x D x σ y D y ) µ (17) ± K K D = i e A ~c v µ Fermi Schrödinger Ĥ + Ĥ Ĥ + Ĥ ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) = E ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) V Hamiltonian H 1 = dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) Ĥ + + V Ĥ + V Ĥ + V Ĥ V dr ˆF ) (r, α) (Ĥ+ + V ˆF (r, α) = dr ˆF (r, α) ( iσ D) ˆF (r, α) + 1 dr ˆF (r, α) (σ D) ˆF (r, α) = dr dr F A (r, α) F B (r, α) δ (r r ) ( ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) (18) (19) dr ˆF (r, α) ( µ + V ) ˆF (r, α) () D x id y D x + id y ) F A (r, α) F B (r, α) r = dr dr δ (r r ) (D x + id y ) r F B (r, α) F A (r, α) + (D x id y ) r F A (r, α) F B (r, α) = dr {(D x + id y ) F A (r, α)} F B (r, α) + {(D x id y ) F B (r, α)} F A (r, α) = dr F A (r, α) ( ) Dx idy F B (r, α) + F B (r, α) ( ) Dx + idy F A (r, α) = dr ˆF { T T (r, α) (σ D ) ˆF (r, α)} (1) 38

dr ˆF (r, α) ( µ + V ) ˆF (r, α) = dr ˆF { T T (r, α) ( µ + V ) ˆF (r, α)} () dr ˆF ) (r, α) (Ĥ+ + V ˆF (r, α) = = dr ˆF { } T T (r, α) iσ D ( µ + V ) ˆF (r, α) dr ˆF ( ) { T T (r, α) Ĥ + V ˆF (r, α)} (3) ) drĝ (r, α) (Ĥ + V Ĝ (r, α) = ( ) {Ĝ T drĝt (r, α) Ĥ V (r, α)} (4) H 1 = 1 dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T H + + V H + V H + V H V H+ V H V H+ + V H + V ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T (5) H = 1 dr α,β dr ψ α (r) ψ β (r ) g (r r ) ψ β (r ) ψ α (r) (6) spin-singlet g (r r ) = gδ (r r ) = gδ µ,ν δ (r r ) (7) g 39

H = 1 = g α drψ (r, µ, α) ψ (r, µ, ᾱ) gψ (r, µ, ᾱ) ψ (r, µ, α) dr{ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) = g +ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, )} dr { ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) } (8) = g ψ (r, µ, ) ψ (r, µ, ) (9) = g ψ (r, µ, ) ψ (r, µ, ) (3) ψ (r, µ, ) ψ (r, µ, ) g + ψ (r, µ, ) ψ (r, µ, ) g + ψ (r, µ, ) ψ (r, µ, ) g ψ (r, µ, ) ψ (r, µ, ) g (31) (3)... 1 ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) ψ (r, µ, ) = g ψ (r, µ, ) ψ (r, µ, ) + g ψ (r, µ, ) ψ (r, µ, ) g (33) H = dr { ψ (r, µ, ) ψ (r, µ, ) + ψ (r, µ, ) ψ (r, µ, ) } = 1 dr { F µ (r, ) e ik r + G µ (r, ) e ik r} { F µ (r, ) e ik r + G µ (r, ) e ik r} + { F µ (r, ) e ik r + G µ (r, ) e ik r} { F µ (r, ) e ik r + G µ (r, ) e ik r} (34) = 1 dr {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, )} + { F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) } + { F µ (r, ) F µ (r, ) e ik r + G µ (r, ) G µ (r, ) e ik r} + { F µ (r, ) F µ (r, ) e ik r + G µ (r, ) G µ (r, ) e ik r} (35) F F, GG 4

H = 1 dr {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, )} = 1 + { F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) } (36) dr {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) G µ (r, ) F µ (r, ) F µ (r, ) G µ (r, ) } + {F µ (r, ) G µ (r, ) + G µ (r, ) F µ (r, ) = 1 G µ (r, ) F µ (r, ) F µ (r, ) G µ (r, ) } (37) dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T (38) Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T Hamiltonian H = H 1 + H = 1 dr ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T H + + V H + V H + V H V H+ V H V H+ + V H + V ˆF (r, ) Ĝ (r, ) ˆF (r, ) Ĝ (r, ) ˆF (r, ) T Ĝ (r, ) T ˆF (r, ) T Ĝ (r, ) T (39) (1,1) (1,8) (8,1) (8,8) BCS Hamiltonian 41

H BCS = dr ˆF (r, ) Ĝ (r, ) T H + + V ˆF (r, ) H + V Ĝ (r, ) T (4) ˆF (r, ) ˆf (r, ) = e i r (41) Ĝ (r, ) ĝ (r, ) Hamiltonian H + V = iσ D + µ + V iσ D + µ + V (4) D = (43) H + V iσ + µ + V = H + + V (44) BdG H + + V u u = E H + + V v v (45) u = φ A φ B +, v = φ A φ B (46) φ A B K K Andreev (,) (,7) (7,) (7,7) BCS Hamiltonian H BCS = dr Ĝ (r, ) ˆF (r, ) T H + V Ĝ (r, ) H+ + V ˆF (r, ) T (47) Ĝ (r, ) ˆF (r, ) = ĝ (r, ) ˆf (r, ) e i r (48) 4

H+ + V = iσ D + µ + V iσ D + µ + V (49) H+ + V H + V (5) BdG H + V u u = E H + V v v (51) u = φ A φ B, v = φ A φ B + (5) K K Andreev BdG H ± + V u u = E (53) H ± + V v v BdG H ± V u u = E (54) H ± V v v BdG H ± Dirac Hamiltonian Dirac-Bogoliubov-de Gennes DBdG K K 43

44

1 P.G.de Gennes, Superconductivity of Metals and Alloys,Benjamin,New Yor, (1966),,, 4, 345 (7) 3 C.W.J.Beenaer, Phys.Rev.Lett.97, 677 (6) 4 T.Ando, J.Phys.Soc.Jpn.74, 777 (5) 5,, (7) 6 K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, M.I.Katsnelson, I.V.Grigorieva, S.V.Dubons, and A.A.Firsov, Nature (London) 438, 197 (5) 7 Y.Zheng, Y.W.Tan, H.L.Stormer, and P. Kim, Nature (London) 438, 1 (5) 8 M.Ohishi, M.Shiraishi, R.Nouchi, T.Nozai, T.Shinjo, and Y.Suzui, Jpn.J.Appl.Phys.46, L65 (7) 9 M.J.M.de Jong, and C.W.J.Beenaer, Phys.Rev.Lett.74, 1657 (6) 45