OLC

Similar documents
1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Note; a: Pressure sensor, b: Semi-permeable membrane, c: O-ring, d: Support screen, e: Solution, f: Solvent. Fig. 2. Osmometer cell. Fig. 1. Schematic

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

1..FEM FEM 3. 4.

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

chap1_MDpotentials.ppt

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

28 Horizontal angle correction using straight line detection in an equirectangular image

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

JFE.dvi

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch


鉄筋単体の座屈モデル(HP用).doc

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

1 2 3

電子部品はんだ接合部の熱疲労寿命解析

日立金属技報 Vol.34

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

T05_Nd-Fe-B磁石.indd

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed


第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

H17-NIIT研究報告

16 (16) poly-si mJ/cm 2 ELA poly-si super cooled liquid, SCL [3] a-si poly-si [4] solid phase crystalization, SPC [5] mJ/cm 2 SPC SCL (di

走査型プローブ顕微鏡によるラテックス/デンプンブレンドフィルムの相分離状態の観察

<8B5A8F70985F95B632936EE7B22E696E6464>

卒業論文

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

Vol. 12 ( ) Mirifusus Evolution of Radiolarian Mirifusus (Marine Plankton) and Mechanical Optimization of Frame Structure Structual Mechanichal

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

4/15 No.

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

24 Depth scaling of binocular stereopsis by observer s own movements

70 : 20 : A B (20 ) (30 ) 50 1

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

untitled

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

塗装深み感の要因解析


5b_08.dvi

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

06_学術.indd

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

06_学術_関節単純X線画像における_1c_梅木様.indd

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


鉄鋼協会プレゼン

Table 1 Properties of Shrink Films on Market Fig. 2 Comparison of Shrinkage curves of PS and PET films. Fig. 3 Schematic diagram of "Variations in bot

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

平常時火災における消火栓の放水能力に関する研究

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

P036-P041

2 1 ( ) 2 ( ) i

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

85 4

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

SO(2)

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

note1.dvi

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

Al-Si系粉末合金の超塑性


Part () () Γ Part ,

kiyo5_1-masuzawa.indd

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,



藤村氏(論文1).indd

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2017-CG-166 No /3/ HUNTEXHUNTER1 NARUTO44 Dr.SLUMP1,,, Jito Hiroki Satoru MORITA The

mm mm PC PC Epson Endeavor NT mm288 mm 30 mm 3 I II4 1FQR 5 mm II Tab. 1 Characteristics of participants. 2 Fig. 2 Adj


Effect of Autofrettage on Fatigue Crack Growth Rate for High Pressure Reactors For high pressure reactor vessels such as for polyethylene production,

December 28, 2018

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (


原稿.indd

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

2000年度『数学展望 I』講義録


Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

:. SPSS


Transcription:

OLC 2013 2

Master thesis Molecular Dnamics Studies on Friction Mechanism of OLC Hideaki NISHIMURA Feburar 2013 Department of Mechanical Engineering, Graduate School of Engineering, Kobe Universit, Kobe, Japan

OLC OLC Stone-Wales 60n 2 (n=1 6) OLC OLC OLC OLC OLC OLC C 60 OLC 10 2 C 960 C 1500 OLC OLC 10 1 OLC OLC

Summar OLC is epected as new solid lubricant because of its spherical structure. For a new insight on the friction properties of OLC thin film, various molecular dnamics (MD) simulations are performed on the compression and friction of isolated fullerene/olc and thin films composed of the arra of fullerenes/olcs. First, we have made spherical fullerenes based on the polhedral rule of 60n 2 (n=1 6) atoms with Stone-Wales defects. OLCs were also made b nesting these fullerenes. Then we performed various compression simulations on isolated fullerene/olc. In the point compression b holding the five-membered ring at the top and bottom of fullerene/olc, the OLCs showed higher strength than the fullerenes because of its multi-laer structure. Detail observation revealed that the internal fullerene in the OLC receives higher force than the isolated fullerene. According to the compression b a flat diamond wall, we also found the following facts; (1) the OLCs show higher stress than the fullerenes at the earl stage of compression, (2) the smaller fullerene/olc shows higher stress than the larger ones, and (3) the OLC shows drastic stress increase when the center C 60 was collapsed. Then we performed various scratch simulations on isolated fullerene/olc b a flat diamond wall changing the indentation depth. The friction coefficient showed the order of 10 2 regardless of the indentation depth or collapse morphologies of the target (fullerene/olc). Here, the target carbons glide without rotation under scratch, ecept the OLCs of half crushed C 960 and C 1500. We cannot find out the relationship between the friction coefficient and the sie of fullerenes; however, the large OLC showed lower friction coefficient than the small OLC. Finall, we performed scratch simulations on fullerene/olc thin film. When we introduced the surface roughness of a indenter/substrate, the friction coefficient increased to the order of 10 1. This magnitude agrees with eperimental result. All the fullerene/olc rotate under the scratch, because the were held b the serrated surface. We found that the fullerene shows much higher friction coefficient than the OLC since the can deform to fit their shape to the surface roughness.

1 1 2 4 2.1................................ 4 2.2............................ 5 2.2.1 Brenner....................... 5 2.2.2 Lennard-Jones.................... 9 2.2.3............................... 10 2.3................................. 13 2.4............................ 15 2.5....................... 16 3 18 3.1...................... 18 3.1.1............................... 18 3.1.2............................... 18 3.2........................... 20 3.2.1........................ 20 3.2.2..................... 27 3.3............... 35 3.3.1............................... 35 3.3.2............................... 36 4 OLC 43 4.1...................... 43 4.1.1............................... 43 i

ii 4.1.2............................... 43 4.2........................... 45 4.2.1........................ 45 4.2.2..................... 52 4.3............... 56 4.3.1............................... 56 4.3.2............................... 56 5 63 5.1................. 63 5.1.1............................... 63 5.1.2............................... 66 5.2................. 75 5.2.1............................... 75 5.2.2............................... 75 6 86 89 91 99

1 C [1] 60 (CNT) [2] 1992 Nature Ugarte (Onion-Like Carbon:OLC) [3] ( 1.1) OLC (Transmission Electron Microscope:TEM) nm nm C 60 0.7[nm] [4] [5] Kunetsov OLC [4],[6] Hirata Igarashi OLC 0.1 [7] Jol-Pottu Ohmae OLC [8] [10] [11] [13] C 60 CNT 1

1 2 C 60 [14] CNT [15] CNT CNT [16] Hirai, Nishimaki, CNT [17] Deguchi Yamaguchi CNT Stone-Wales [18] CNT CNT [19] Tight Binding [20],[21] OLC TEM OLC C 60 (0.334[nm]) n 60n 2 [22] [23] OLC TEM OLC OLC Saito [24] Terrones 60n 2 Stone-Wales [25] Wang Chang Stone-Wales [26] [27],[28] OLC C 60 C 240 C 540 OLC [29],[30]

1 3 OLC OLC OLC OLC 2, OLC 3 2 4 OLC 3 5 OLC ( OLC ), 6. 10 nm Fig.1.1 TEM image of OLC. [3]

2 2.1 (molecular dnamics method MD ) m i d 2 r i dt 2 = F i (2.1) m i r i i i F i Φ tot F i = Φ tot r i (2.2) (2.1) Verlet Verlet t + t t t i r i (t ± t) Talor r i (t + t) = r i (t) + t dr i (t) dt r i (t t) = r i (t) t dr i (t) dt + ( t)2 2 + ( t)2 2 v i t i d 2 r i (t) + O ( ( t) 3) dt 2 (2.3) d 2 r i (t) + O ( ( t) 3) dt 2 (2.4) dr i dt = v i (t) (2.5) 4

2 5 (2.1) (2.5) (2.3) (2.4) r i (t + t) = r i (t) + tv i (t) + ( t)2 2 r i (t t) = r i (t) tv i (t) + ( t)2 2 F i (t) + O ( ( t) 3) m i (2.6) F i (t) + O ( ( t) 3) m i (2.7) r i (t + t) + r i (t t) = 2r i (t) + ( t) 2 F i (t) m i + O ( ( t) 4) (2.8) r i (t + t) r i (t t) = 2 tv i (t) + O ( ( t) 3) (2.9) t + t t r i (t + t) = 2r i (t) r i (t t) + ( t) 2 F i (t) m i + O ( ( t) 4) (2.10) v i (t) = 1 2 t {r i (t + t) r i (t t)} + O ( ( t) 2) (2.11) t + t 2 t t t (t = 0) t = t r i ( t) (2.6) 2.2 2.2.1 Brenner Tersoff Brenner [31] 2 sp 2 sp 3

2 6 Φ tot = i j(>i) f c (r ij ) [ V R (r ij ) B ij V A (r ij ) ] (2.12). r ij i, j V R (r ij ) B ij V A (r ij ) f c (r ij ). D e V R (r ij ) = S 1 ep [ β 2S (r ij R e ) ] (2.13) V A (r ij ) = S D e 2 S 1 ep β S (r ij R e ) (2.14) 1, r ij < R [ ( )] 1 π (rij R f c (r ij ) = 1 + cos 1 ) R 2 R /2, R 1 < r ij < R 2 (2.15) 1 0, r ij > R 2 Bij i j k 3, B ij = 1 2 (B ij + B ji ) (2.16) B ij, B ji i, j B ij B ji. B ij = [1 + G(θ i )f c (r ik )] δ (2.17) k i,j B ji = [1 + G(θ j )f c (r jk )] δ (2.18) k i,j r ik i, k, r jk j, k. θ i i j i k, θ j j i j k., G(θ i )f c (r ik ) ζ ij, G(θ j )f c (r jk ) ζ ji. G(θ) G(θ) = a 0 [ 1 + c2 0 c 2 0 d 2 0 d 2 0 + (h + cos θ) 2 ] (2.19). (2.12) (2.19) C 2

2 7 fcc 2.1 Table 2.1 Potential parameters for Brenner potential. D e [ev] 6.0 R e [nm] 0.139 β [nm 1 ] 0.21 S 1.22 h 1.0 a 0 0.00020813 c 0 330.0 d 0 3.5 R 1 [nm] 0.17 R 2 [nm] 0.20 h 1 h 0 h 1 180 [deg.] Brenner, 1, 2. 2. 2.1 2.2 2.1,. 2.2 60 90[deg.],, j, k.

2 8 20 θ = 30 θ = 60 θ = 120 θ = 180 E [ev] 10 0 0.1 0.12 0.14 0.16 0.18 0.2 r [nm] Fig.2.1 Relationship between potential energ and bond length. 0.2 0.18 r[nm] 0.16 0.14 60 120 180 θ[deg] Fig.2.2 Relationship between stable bond length and bending angle.

2 9 2.2.2 Lennard-Jones Van der Waals Lennard-Jones [32] Φ tot = i j( i) ( ) 12 ( ) 6 4ϵ σ σ (2.20) r ij r ij 1 2 (2.20) 2.2, 2.3 Table 2.2 Potential parameters for Van der Waals. ϵ σ 0.004783 [ev] 0.3345 [nm] 10 3 5.0 E [ev] 0.0 5.0 0.3 0.4 0.5 0.6 r [nm] Fig.2.3 Relationship between Van der Waals potential and atomic distance.

2 10 2.2.3 (2.2) Brenner ij. r i, r j, r k Φ ij = V R (r ij ) B ij + B ji V A (r ij ) (2.21) 2 F i = Φ ij r i, F j = Φ ij r j, F k = Φ ij r k, j > i.. i F i = [ Bij V A(r ij ) V R(r ij ) ] r ij + 1 [ r ij 2 V Bij A(r ij ) r i + B ] ji ri (2.22). r. V R (r ij ), V A (r ij ) r ij D e V R(r ij ) = β 2S S 1 ep [ β 2S (r ij R e ) ] r ij (2.23) r ij 2 V A(r S D e 2 ij ) = β S S 1 ep β S (r ij R e ) r ij (2.24) r ij. f c (r ij ) r ij f c (r ij ) 1 ( ) π π (rij R 1 ) sin : R 2 > r ij > R 1 = 2 R 2 R 1 R 2 R 1 (2.25) r ij 0 : r ij < R 1, R 2 < r ij. B ij, B ji r i. B ij r i ζ ij r i = = δ(1 + ζ ij ) δ 1 ζ ij (2.26) r i ( i f c(r ik )G(θ i ) r ik + f c (r ik )G (θ i ) cos θ ) i (2.27) r ik r i k i,j G (θ) G(θ) cos θ. G (θ) = G(θ) [ cos θ = a 2c 2 ] 0(1 + cos θ) 0 [d 2 0 + (1 + cos θ) 2 ] 2 (2.28)

2 11 cos θ. j, i, k B ji. cos θ i = r ij r ik (2.29) r ij r ik ( cos θ i 1 = cos θ ) ( i rij 1 + cos θ ) i rik (2.30) r i r ik r ij r ij r ij r ik r ik B ji = (1 + ζ ji ) δ B ji r i = δ (1 + ζ ji ) δ 1 ζ ji r i (2.31) j ζ ji = f c (r jk )G (θ j ) cos θ j (2.32) r i r i k i,j cos θ j = r ji r jk r ji r jk (2.33) cos θ j = 1 r jk + cos θ j r ji r i r ji r jk r ji r ji (2.34) F i = [ Bij V A(r ij ) V R(r ij ) ] r ij r ij + 1 2 V A(r ij ) ( δ (1 + ζ ij ) δ 1) i + 1 2 V A(r ij ) ( δ (1 + ζ ji ) j k i,j j δ 1) k i,j f c (r ik )G (θ i ) ( ) 1 r ik cos θ i r ij ) cos θ i r ik f c(r ik )G(θ i ) + f c (r ik )G (θ i ) ( 1 f c (r jk )G (θ j ) cos θ j r ji f c (r jk )G (θ j ) 1 r ji F j = [ Bij V A(r ij ) V R(r ij ) ] ( r ) ij + 1 [ r ij 2 V Bij A(r ij ) r i r ji r ji rjk r jk + B ] ji r i r ij (2.35) r ij r ij r ik r ik. B ij ζ ij ζ ij r i = i k i,j ( f c (r ik )G (θ i ) cos θ i r j ) (2.36) ζ ji r j = j k i,j cos θ i = 1 r ik + cos θ i r j r ij r ik r ij ( f c(r jk )G(θ j ) r jk + f c (r jk )G (θ j ) cos θ j r jk r j r ij r ij (2.37) ) (2.38)

2 12 ( cos θ j 1 = cos θ ) ( j rji 1 + cos θ ) j rjk (2.39) r j r jk r ji r ji r ji r jk r jk F j = [ Bij V A(r ij ) V R(r ij ) ] ( r ) ij r ij + 1 2 V A(r ij ) ( δ (1 + ζ ij ) δ 1) i + 1 2 V A(r ij ) ( δ (1 + ζ ji ) k k i,j j δ 1) k i,j F k = 1 2 V A(r ij ) f c (r ik )G (θ i ) cos θ i r ij f c (r ik )G (θ i ) 1 r ij r ij ij r ik r ik f c (r jk )G (θ j ) ( 1 r jk cos θ ) j r ji f c(r jk )G(θ j ) + f c (r jk )G (θ j ) ( 1 r ji cos θ ) j r jk [ Bij r k + B ] ji r k (2.40) r ji r ji rjk r jk. B ij, B ji ζ ij, ζ ji ζ ij r k = ζ ji r k = i k i,j j ( k i,j ( ( f c(r ik )G(θ i ) r ) ik + f c (r ik )G (θ i ) cos θ ) i r ik r k ( f c(r jk )G(θ j ) r ) jk + f c (r jk )G (θ j ) cos θ ) j r jk r k (2.41) (2.42). F k = 1 2 V A(r ij ) ( δ (1 + ζ ij ) δ 1) i + 1 2 V A(r ij ) ( δ (1 + ζ ji ) k i,j j δ 1) k i,j Van der Waals f c (r ik )G (θ i ) 1 r ik f c(r ik )G(θ i ) + f c (r ik )G (θ i ) ( cos θ i r ik ) f c (r jk )G (θ j ) 1 r jk f c(r jk )G(θ j ) + f c (r jk )G (θ j ) cos θ j r jk r ij r ij r ik ik r ji r ji rjk r jk F i = Φ(r ij) r ij = 4ϵ 12 ( ) 12 σ + 6 ( ) 6 σ r ij (2.43) r j( i) ij r ij r ij r ij r ij F j = F i (2.44) i j k r ij, r ik i, j i, k θ i r ij, r ik

2 13 2.3 N 1step N (N 1) N ( r c ) 2.4 r c r fc r c N (r c N 1) r fc r c (N (N 1) ) rfc rc Fig.2.4 Schematic of bookkeeping method.

2 14 2.5 b b N b 0 b Fig.2.5 Schematic of domain decomposition method.

2 15 2.4 (2.45) 1 2 mα v α i v α i = 3 2 k BT (2.45) m α : α v α i k B : T α : Boltmann = 1.38 10 23 [J/K] T 0 α v α i 0 v α i 0 (2.46) ( ) 0.5 vi α 3kB T 0 0 = (2.46) T α (2.47) v α i = m α ( ) 0.5 3kB T (2.47) m α (2.46) (2.47) vi α 0 vi α = ( T0 T ) 0.5 (2.48) T T 0 (2.48) Verlet r α i (t+ t) 2.49 T 0 /T r α i (t + t) r α i (t + t) = r α i (t + t) r α i (t) = r α i (t) r α i (t t) + ( t) 2 F α i (t) m α (2.49) [33]

2 16 2.5 [23] Euler 12 (Isolated Pentagon Rule) C 60 [23] 60n 2 [34] 2.6 6-6-6-6 5-7-5-7 (Stone-Wales ) C 240 C 60 C 240 2.7 C 540 2.8 C 960 (a) Before inserting (b) After inserting Fig.2.6 Snapshots of Stone-Wales defect.

2 17 (a) Before inserting (b) After inserting Fig.2.7 Snapshots of epanded C 540. (a) Before inserting (b) After inserting Fig.2.8 Snapshots of epanded C 960.

3 3.1 3.1.1 60n 2 n=1 6 ( ) 20000[fs], 0.145[nm]. Mawell Boltmann 10[K] 1.0[fs] 3.1.2 n r OLC n 1 3.1 r 3.1 C 60 0.35nm ( ) (0.336nm) 3.1 C 1500 3.1 18

3 19 Table 3.1 Fullerene parameter n, radius and radius difference after relaation. fullerene n radius [nm] radius difference [nm] C 60 1 0.364 C 240 2 0.721 0.357 C 540 3 1.078 0.357 C 960 4 1.455 0.377 C 1500 5 1.805 0.350 C 2160 6 2.170 0.365 1 2 (a) top view (b) side view ( 1 ) (c) side view ( 2 ) Fig.3.1 Snapshots of C 1500 after relaation.

3 20 3.2 3.2.1 n=3 6 5.0 10 6 [/fs] Mawell Boltmann 10[K] 1.0[fs] 3.2 C 540 3.2(ii) 3.2(i) 3.2(i) ε < 0.05 (a)ε = 0.005 (b)ε = 0.03 (b)ε = 0.03 (c)ε = 0.05 3.2(ii) (b) (b) (c) 3.2(i) 0.05 < ε < 0.22 (c)ε = 0.05 (d)ε = 0.17 3.2(ii) (e) 3.3 C 960 3.3(i) (a) (b) (b) (c) 3.3(ii) C 540 (b) 3.3(i) 0.095 < ε < 0.3 (c) (d) C 540 (d)

3 21 3.3(ii) (e) 3.4 C 1500 3.4(i) (a) (c) 3.4(ii) (d) (f) C 960 3.5 C 2160 3.5(i) (a) (c) (d) ( 3.5(ii) (e) ) 3.6 C 540 ε = 0.17 σ = 2.21[GPa] C 960 ε = 0.23 σ = 1.14[GPa] C 1500 ε = 0.175 σ = 1.12[GPa] C 2160 ε = 0.245 σ = 0.52[GPa] bond 3.7 ( 2.7 ) 3.7 C 540 C 1500 C 960 C 2160 C 540 C 1500 C 960 C 2160

3 22 Compressive stress, -σ, GPa 2 1 0 (a) (b) (c) (d) (e) C 540 (f) 0 0.1 0.2 0.3 Compressive strain, ε (i) Stress - strain curve of C 540 under compression. close-up bottom view (a) ε =0.005 (b) ε =0.03 (c) ε=0.05 close-up bottom view (d) ε =0.17 (e) ε =0.19 (f) ε=0.215 (ii) Snapshots of C 540 under compression. Fig.3.2 Compression of C 540 b holding the five-membered ring at the top and bottom.

3 23 C 960 Compressive stress, -σ, GPa 2 1 0 (a) (b) (c) (d) (e) (f) 0 0.1 0.2 0.3 Compressive strain, ε (i) Stress - strain curve of C 960 under compression. (a) ε =0.045 (b) ε =0.055 close-up top view (c) ε=0.095 (d) ε =0.23 (e) ε =0.245 close-up top view (f) ε=0.27 (ii) Snapshots of C 960 under compression. Fig.3.3 Compression of C 960 b holding the five-membered ring at the top and bottom.

3 24 C 1500 Compressive stress, -σ, GPa 2 1 0 (b) (a) (c) (d) (e) 0 0.1 0.2 0.3 Compressive strain, ε (f) (i) Stress - strain curve of C 1500 under compression. (a) ε =0.015 (b) ε =0.025 close-up bottom view (c) ε =0.06 (d) ε =0.175 (e) ε =0.18 close-up bottom view (f) ε=0.295 (ii) Snapshots of C 1500 under compression. Fig.3.4 Compression of C 1500 b holding the five-membered ring at the top and bottom.

3 25 C 2160 Compressive stress, -σ, GPa 2 1 0 (a) (d) (e) (c) (f) (b) 0 0.1 0.2 0.3 Compressive strain, ε (i) Stress - strain curve of C 2160 under compression. (a) ε =0 (b) ε =0.01 close-up top view (c) ε =0.125 (d) ε =0.245 (e) ε =0.255 close-up top view (f) ε=0.3 (ii) Snapshots of C 2160 under compression. Fig.3.5 Compression of C 2160 b holding the five-membered ring at the top and bottom.

3 26 Compressive stress, -σ, GPa 2 1 0 C 540 C 960 C 1500 C 2160 0 0.1 0.2 0.3 Compressive strain, ε Fig.3.6 Stress - strain curves of fullerenes under compression. (a) C540 (b) C960 (c) C1500 (d) C2160 Fig.3.7 Top view of fullerenes after stress peak.

3 27 3.2.2 n=3 6 0.44[nm] 20000[fs] 3.8 1[nm] D 3/4D 0.7[nm] 1.0 10 4 [nm/fs]. 7.1[nm] Van der Waals Mawell Boltmann 10[K] 1.0[fs] 1nm 7.1nm Fig.3.8 Schematic of wall compression (C 1500 ).

3 28 3.9 C 540 3.9(ii) 3.9(i) 3.9(i) 0 3.6 2 3.9(i) (a) 0.6[nm] Van der Waals Van der Waals 0.37[nm] 0.6[nm] (1[nm]-0.37[nm]) (a) (d) 1.15[nm] 3.9(ii) (d) (e) 3.2(ii) (f) 1.7[nm] 3.9(ii) (f) 3.10 C 960 3.10(i) (a) (b) (c) (c) (e) (a) (b) 3.10(ii) 3.3(ii) (b) (e) (f) (h) (e) C 540 (f) 3.10(ii) (f) (g) (h) 3.11 C 1500 C 960 3.11(ii) (f)

3 29 3.12 C 2160 (h) 3.12(ii) (c) (d) 3.5(ii) 3.12(ii) (f) (g) (h) 3.12(ii) (h) (i) (h) Van der Waals 3.13 C 2160 3.6 0.2 C 540 1.85[nm] C 960 2.5[nm] C 1500 2.9[nm] C 2160 3.7[nm] (C 540 3.9(ii) (f) C 960 3.10(ii) (h) C 1500 3.11(ii) (f) C 2160 3.9(ii) (i)) 3.14 C 540 C 1500 C 2160

3 30 C 540 Compressive stress, -σ, GPa 4 (d) (f) 2 (e) (b) (c) 0 (a) 0 2 4 Displacement of upper wall, nm (i) Stress - displacement curve of C 540 under compression. (a) 0.6nm indentation (b) 0.85nm indentation (c) 0.9nm indentation (d) 1.15nm indentation (e) 1.4nm indentation (f) 1.85nm indentation (ii) Snapshots of C 540 under compression. Fig.3.9 Compression of C 540 b diamond wall.

3 31 C 960 Compressive stress, -σ, GPa 4 2 0 (a) (c) (b) (f) (g) (e) (d) (h) 0 2 4 Displacement of upper wall, nm (i) Stress - displacement curve of C 960 under compression. (a) 0.85nm indentation (b) 0.95nm indentation (c) 1.3nm indentation (d) 1.8nm indentation (e) 2.0nm indentation (f) 2.3nm indentation (g) 2.4nm indentation (h) 2.5nm indentation (ii) Snapshots of C 960 under compression. Fig.3.10 Compression of C 960 b diamond wall.

3 32 C 1500 Compressive stress, -σ, GPa 4 2 0 (a) (c) (b) (d) (e) (f) 0 2 4 Displacement of upper wall, nm (i) Stress - displacement curve of C 1500 under compression. (a) 0.8nm indentation (b) 0.85nm indentation (c) 1.4nm indentation (d) 1.7nm indentation (e) 2.2nm indentation (f) 2.9nm indentation (ii) Snapshots of C 1500 under compression. Fig.3.11 Compression of C 1500 b diamond wall.

3 33 C 2160 Compressive stress, -σ, GPa 4 2 (f) (c) (i) (a) (g) (h) 0 (b) (d) (e) 0 2 4 Displacement of upper wall, nm (i) Stress - displacement curve of C 2160 under compression. (a) 0.8nm indentation (b) 0.85nm indentation (c) 1.9nm indentation (d) 2.2nm indentation (e) 2.6nm indentation (f) 2.9nm indentation (g) 3.0nm indentation (h) 3.3nm indentation (i) 3.7nm indentation (ii) Snapshots of C 2160 under compression. Fig.3.12 Compression of C 2160 b diamond wall.

3 34 Compressive stress, -σ, GPa 4 2 0 C 540 C 960 C 1500 C 2160 0 2 4 Displacement of upper wall, nm Fig.3.13 Stress - displacement curves of fullerenes under compression. (a) C540 (b) C960 (c) C1500 (d) C2160 Fig.3.14 Snapshots of fullerenes at the point just before the drastic stress increase.

3 35 3.3 3.3.1 n=3 6 3.15 1[nm] 4 C 540 10.7[nm] C 960 12.8[nm] C 1500 14.9[nm] C 2160 17.1[nm] 1nm+0.1D 1nm+0.3D 1nm+0.5D 1nm+0.7D 4 (D ) 3D 1.0 10 4 [nm/fs]. 1nm 14.9nm Fig.3.15 Schematic of scratch simulation (C 1500 ).

3 36 3.3.2 C 1500 3.16 0 1nm+0.1D 1nm+0.3D ±0.1 1nm+0.5D ±0.05 1nm+0.7D ±0.02 1nm+0.1D 3.2 3.17 (a) C 540 ( ) (b) (d) ( 3.2) 10 2 C 960 C 2160 C 540 C 1500 3.18 C 1500 3.18 1nm+0.3D 3.3 3.19 3.19 3.3 3.2 C 540 C 1500 3.20 C 1500

3 37 1nm+0.5D 3.4 3.21 3.22 3.21 C 540 3.13 3.4 3.22 1nm+0.7D 3.5 3.23 3.24 3.23 Van der Waals ( 3.5 ) 3.24 1nm+0.7D 10 2 5

3 38 average average Friction coefficient, µ 0.1 0-0.1 Friction coefficient, µ 0.1 0-0.1 0 5 10 Displacement of upper wall, nm 0 5 10 Displacement of upper wall, nm (a) 1nm+0.1D indentation (b) 1nm+0.3D indentation average average Friction coefficient, µ 0.1 0-0.1 Friction coefficient, µ 0.1 0-0.1 0 5 10 Displacement of upper wall, nm 0 5 10 Displacement of upper wall, nm (c) 1nm+0.5D indentation (d) 1nm+0.7D indentation Fig.3.16 Friction coefficient - displacement curves of C 1500 under scratch.

3 39 Table 3.2 Friction coefficient of fullerenes (1nm+0.1D indentation). fullerene C 540 C 960 C 1500 C 2160 friction coefficient 0.97 10 2 0.67 10 2 1.38 10 2 0.42 10 2 (a) C540 (b) C960 (c) C1500 (d) C2160 Fig.3.17 Snapshots of fullerenes after indentation (1nm+0.1D indentation). 14.9nm (a) 0nm scratch (b) D (3.61nm) scratch (c) 2D (7.22nm) scratch (d) 3D (10.83nm) scratch Fig.3.18 Snapshots of C 1500 under scratch (1nm+0.1D indentation).

3 40 Table 3.3 Friction coefficient of fullerenes (1nm+0.3D indentation). fullerene C 540 C 960 C 1500 C 2160 friction coefficient 1.45 10 2 0.63 10 2 1.75 10 2 0.75 10 2 (a) C540 (b) C960 (c) C1500 (d) C2160 Fig.3.19 Snapshots of fullerenes after indentation (1nm+0.3D indentation). 14.9nm (a) 0nm scratch (b) D (3.61nm) scratch (c) 2D (7.22nm) scratch (d) 3D (10.83nm) scratch Fig.3.20 Snapshots of C 1500 under scratch (1nm+0.3D indentation).

3 41 Table 3.4 Friction coefficient of fullerenes (1nm+0.5D indentation). fullerene C 540 C 960 C 1500 C 2160 friction coefficient 1.10 10 2 1.19 10 2 1.02 10 2 1.18 10 2 (a) C540 (b) C960 (c) C1500 (d) C2160 Fig.3.21 Snapshots of fullerenes after indentation (1nm+0.5D indentation). 14.9nm (a) 0nm scratch (b) D (3.61nm) scratch (c) 2D (7.22nm) scratch (d) 3D (10.83nm) scratch Fig.3.22 Snapshots of C 1500 under scratch (1nm+0.5D indentation).

3 42 Table 3.5 Friction coefficient of fullerenes (1nm+0.7D indentation). fullerene C 540 C 960 C 1500 C 2160 friction coefficient 1.10 10 2 0.93 10 2 0.62 10 2 0.52 10 2 (a) C540 (b) C960 (c) C1500 (d) C2160 Fig.3.23 Snapshots of fullerenes after indentation (1nm+0.7D indentation). 14.9nm (a) 0nm scratch (b) D (3.61nm) scratch (c) 2D (7.22nm) scratch (d) 3D (10.83nm) scratch Fig.3.24 Snapshots of C 1500 under scratch (1nm+0.7D indentation).

4 OLC 4.1 4.1.1 OLC 30000[fs] OLC C 1500 OLC C 1500 C 540 C 960 C 1500 C 2160 4 4.1.2 4.1 C 1500 4.1 OLC 43

4 OLC 44 1 2 (a) top view (b) side view ( 1 ) (c) side view ( 2 ) Fig.4.1 Snapshots of C 1500 after relaation.

4 OLC 45 4.2 4.2.1 OLC 5.0 10 6 [/fs] 4.2 C 540 4.2(i) ε < 0.05 (a)ε = 0.01 (b)ε = 0.02 (c)ε = 0.05 4.2(ii) (b) 4.2(i) (c)ε = 0.05 (d)ε = 0.215 4.2(ii) (e) C 540 ( 3.7(a) ) C 540 4.3 C 960 4.3(i) 4.3(ii) (a) C 540 (b) (e) (b) C 540 (e) C 960 C 540 3.7(a) C 960 3.7(b) 4.4 C 1500 4.4(i) ε < 0.05

4 OLC 46 4.4(ii) (b) C 540 (c) (e) 4.4(ii) (c) C 540 (d) C 1500 (e) C 960 4.5 C 2160 4.5(ii) (b) C 540 (c) C 1500 (d) C 960 (e) C 2160 4.6 OLC 4.7 3.6 4.7 4.6 3.6 OLC OLC 4.5 C 2160 C 540 C 1500 C 960 C 2160 4.7 4.5 C 960 C 1500 C 2160 4.7 C 540 ( 4.5 0.16 4.7 0.19) OLC

4 OLC 47 @C 540 Compressive stress, -σ, GPa 4 2 0 (a) (d) (e)(f) (c) (b) 0 0.1 0.2 0.3 Compressive strain, ε (i) Stress - strain curve of C 540 under compression. (a) ε =0.01 (b) ε =0.02 (c) ε=0.05 (d) ε =0.215 (e) ε =0.225 (f) ε=0.245 (ii) Snapshots of C 540 under compression. Fig.4.2 Compression of C 540 b holding the five-membered ring at the top and bottom.

4 OLC 48 @C 960 Compressive stress, -σ, GPa 4 2 0 (a) (c) (d) (b) (e) 0 0.1 0.2 0.3 Compressive strain, ε (i) Stress - strain curve of C 960 under compression. (a) ε =0.065 (b) ε =0.245 close-up C540 (c) ε =0.255 (d) ε =0.265 (e) ε=0.275 (ii) Snapshots of C 960 under compression. Fig.4.3 Compression of C 960 b holding the five-membered ring at the top and bottom.

4 OLC 49 @C 1500 Compressive stress, -σ, GPa 4 2 0 (a) (c) (e) (d) (b) 0 0.1 0.2 0.3 Compressive strain, ε (i) Stress - strain curve of C 1500 under compression. (a) ε =0.025 (b) ε =0.04 (c) ε=0.2 close-up C540 (d) ε =0.22 (e) ε =0.245 close-up C960 (ii) Snapshots of C 1500 under compression. Fig.4.4 Compression of C 1500 b holding the five-membered ring at the top and bottom.

4 OLC 50 @C 2160 Compressive stress, -σ, GPa 4 2 0 (a) (b)(c) (d) (e) 0 0.1 0.2 0.3 Compressive strain, ε (i) Stress - strain curve of C 2160 under compression. (a) ε =0.06 (b) ε =0.16 close-up C540 (c) ε=0.185 close-up C1500 (d) ε =0.23 close-up C960 (e) ε =0.26 (ii) Snapshots of C 2160 under compression. Fig.4.5 Compression of C 2160 b holding the five-membered ring at the top and bottom.

4 OLC 51 Compressive stress, -σ, GPa 4 2 0 @C 540 @C 960 @C 1500 @C 2160 0 0.1 0.2 0.3 Compressive strain, ε Fig.4.6 Stress - strain curves of OLCs under compression. Compressive stress, -σ, GPa 4 2 0 C 540 C 960 C 1500 C 2160 0 0.1 0.2 0.3 Compressive strain, ε Fig.4.7 Stress - strain curves of fullerenes under compression.

4 OLC 52 4.2.2 OLC 7.1[nm] 7.1[nm] 0.7[nm] 1.0 10 4 [nm/fs]. 4.8 C 540 4.8(i) 4.6 2.5 4.8(i) Van der Waals (a) 0.7[nm] (c) 1.6[nm] (e) 1.9[nm] 4.8(ii) ( 4.2(ii) ) (c) (e) (c) (d) C 540 (e) C 60 4.9 OLC 1.0[nm] OLC C 540 Van der Waals 0.7[nm] C 1500 4.4(ii) (b) C 1500 OLC C 60 4.9 4.6 4.2(ii) OLC

4 OLC 53 C 1500 C 2160 3.13 4.10 4.10 4.9 3.13 4.9 OLC ( 0.9[nm] ) OLC

4 OLC 54 @C 540 Compressive stress, -σ, GPa 10 (c) (e) (d) 5 (b) 0 (a) 0 2 4 Displacement of upper wall, nm (i) Stress - displacement curve of C 540 under compression. (a) 0.7nm indentation (b) 0.85nm indentation (c) 1.6nm indentation (d) 1.7nm indentation (e) 1.9nm indentation close-up C60 (ii) Snapshots of C 540 under compression. Fig.4.8 Compression of C 540 b diamond wall.

4 OLC 55 Compressive stress, -σ, GPa 10 5 0 0 2 4 Displacement of upper wall, nm @C 540 @C 960 @C 1500 @C 2160 Fig.4.9 Stress - displacement curves of OLCs under compression. Compressive stress, -σ, GPa 10 5 0 C 540 C 960 C 1500 C 2160 0 2 4 Displacement of upper wall, nm Fig.4.10 Stress - displacement curves of fullerenes under compression.

4 OLC 56 4.3 4.3.1 OLC OLC 4 C 540 10.7[nm] C 960 12.8[nm] C 1500 14.9[nm] C 2160 17.1[nm] 1nm+0.1D 1nm+0.3D 1nm+0.5D 1nm+0.7D 4 4.3.2 1nm+0.1D C 1500 4.11 4.1 OLC 4.11 3.16(a) 5 1 OLC 4.1 10 2 OLC 4.12 OLC C 1500 4.13 OLC C 1500 1nm+0.3D 4.14 OLC 4.2 4.15 4.14 1nm+0.1D

4 OLC 57 ±0.01 4.15 4.2 OLC 1nm+0.1D 4.16 C 1500 1nm+0.5D 4.17 4.19 4.3 4.17 C 1500 1nm+0.3D (b) (c) (d) 3.5[nm] 4.18 OLC C 60 OLC ( 4.3) 1nm+0.1D 1nm+0.3D C 1500 4.19 OLC 4.19 (b) (d) 4.17 (a) (b) C 60 C 240 (b) (c) (c) (d) 4.17 (c) (e) (f) 4.17 1nm+0.5D C 960 C 540 C 2160 C 960 C 1500 4.18 1nm+0.7D 4.20 4.22 4.4

4 OLC 58 4.20 C 1500 4.4 OLC 1nm+0.5D OLC 1nm+0.5D 4.21 OLC C 1500 4.22 1nm+0.5D bond

4 OLC 59 average Friction coefficient, µ 0.02 0-0.02 0 5 10 Displacement of upper wall, nm Fig.4.11 Friction coefficient - displacement curve of C 1500 under scratch (1nm+0.1D indentation). Table 4.1 Radius of contact area and friction coefficient of OLCs (1nm+0.1D indentation). OLC R c [nm] friction coefficient C 540 0.78 1.49 10 2 C 960 1.05 0.54 10 2 C 1500 1.25 0.47 10 2 C 2160 1.47 0.34 10 2 (a) @C540 (b) @C960 (c) @C1500 (d) @C2160 Fig.4.12 Snapshots of OLCs after indentation (1nm+0.1D indentation). 14.9nm (a) 0nm scratch (b) D (3.61nm) scratch (c) 2D (7.22nm) scratch (d) 3D (10.83nm) scratch Fig.4.13 Snapshots of C 1500 under scratch (1nm+0.1D indentation).

4 OLC 60 average Friction coefficient, µ 0.02 0-0.02 0 5 10 Displacement of upper wall, nm Fig.4.14 Friction coefficient - displacement curve of C 1500 under scratch (1nm+0.3D indentation). Table 4.2 Radius of contact area and friction coefficient of OLCs (1nm+0.3D indentation). OLC R c [nm] friction coefficient C 540 0.99 0.82 10 2 C 960 1.33 0.47 10 2 C 1500 1.62 0.43 10 2 C 2160 1.92 0.30 10 2 (a) @C540 (b) @C960 (c) @C1500 (d) @C2160 Fig.4.15 Snapshots of OLCs after indentation (1nm+0.3D indentation). 14.9nm (a) 0nm scratch (b) D (3.61nm) scratch (c) 2D (7.22nm) scratch (d) 3D (10.83nm) scratch Fig.4.16 Snapshots of C 1500 under scratch (1nm+0.3D indentation).

4 OLC 61 average Friction coefficient, µ (d) 0.02 (b) 0-0.02 (c) 0 5 10 Displacement of upper wall, nm Fig.4.17 Friction coefficient - displacement curve of C 1500 under scratch (1nm+0.5D indentation). Table 4.3 Radius of contact area and friction coefficient of OLCs (1nm+0.5D indentation). OLC R c [nm] friction coefficient C 540 1.17 1.66 10 2 C 960 1.60 1.45 10 2 C 1500 1.92 1.22 10 2 C 2160 2.26 1.20 10 2 (a) @C540 (b) @C960 (c) @C1500 (d) @C2160 Fig.4.18 Snapshots of OLCs after indentation (1nm+0.5D indentation). 14.9nm (a) 0nm scratch (b) 2.8nm scratch (c) 3.5nm scratch surface closeup (d) 5.0nm scratch (e) 7.0nm scratch (f) 3D (10.83nm) scratch Fig.4.19 Snapshots of C 1500 under scratch (1nm+0.5D indentation).

4 OLC 62 average Friction coefficient, µ 0.02 0-0.02 0 5 10 Displacement of upper wall, nm Fig.4.20 Friction coefficient - displacement curve of C 1500 under scratch (1nm+0.7D indentation). Table 4.4 Radius of contact area and friction coefficient of OLCs (1nm+0.7D indentation). OLC R c [nm] friction coefficient C 540 1.43 1.24 10 2 C 960 1.98 1.05 10 2 C 1500 2.46 0.55 10 2 C 2160 2.92 0.48 10 2 (a) @C540 (b) @C960 (c) @C1500 (d) @C2160 Fig.4.21 Snapshots of OLCs after indentation (1nm+0.7D indentation). 14.9nm (a) 0nm scratch (b) D (3.61nm) scratch (c) 2D (7.22nm) scratch (d) 3D (10.83nm) scratch Fig.4.22 Snapshots of C 1500 under scratch (1nm+0.7D indentation).

5 5.1 5.1.1 OLC C 540 C 2160 OLC C 540 C 2160 5.1 small serrate (S) large serrate (L) 2 5.2 (C 540 C 540 2.5[nm] C 2160 C 2160 5.0[nm] ) 30000[fs] 1000[nN] 7.5[nm] 1.0 10 4 [nm/fs]. OLC (14.9 14.9[nm 2 ]) 5.1 63

5 64 Table 5.1 Diameter, number of atoms and coverage rate in simulation models. model name diameter [nm] No. of atoms coverage rate [%] C 540 2.16 19440 59.5 C 2160 4.34 19440 60.0 C 540 2.16 30240 59.5 C 2160 4.34 49140 60.0 14.9nm 14.9nm (a) Small serrate indenter 1.06nm 0.55nm 1.06nm 14.9nm 14.9nm 0.55nm (b) Large serrate indenter 1.24nm 2.49nm Fig.5.1 Dimensions of diamond wall indenter.

5 65 (a) C540 (b) C2160 2.5nm 5.0nm (c) @C540 (d) @C2160 Fig.5.2 Top view of fullerene/olc arra.

5 66 5.1.2 small serrate C 540 C 540 5.3 OLC 3 4 3.16 4.11 C 2160 C 2160 1000[nN] 5.2 OLC 3 4 OLC C 2160 < C 2160 < C 540 =.. C 540 C 540 C 540 C 2160 C 2160 OLC Van der Waals (VDW) 5.4 OLC VDW VDW OLC C 540 C 540 C 2160 C 2160 5.5 OLC ( 5.6 5.7) OLC (c) (d) OLC (a) (b) C 2160 C 540 C 540 C 2160 C 2160 5.6 5.7 C 540 C 540 5.7 C 540 (7.5[nm])

5 67 5.6 C 540 large serrate C 540 C 540 5.8 small serrate 5.3 2 small serrate C 2160 C 2160 5.3 5.2 C 540 C 540 C 2160 C 2160 5.9 large serrate OLC VDW 5.4 C 540 C 540 C 2160 C 2160 VDW 5.4 C 540 C 2160 OLC C 540 C 2160 OLC 5.10 OLC 5.10 (c) (d) OLC OLC VDW 5.10 (a) (c) C 540 C 540 C 540 small serrate C 540 5.10 5.5 (a) (c) C 540 C 540 (b) (d) C 2160 C 2160 small serrate large serrate C 2160 C 2160 C 540 C 540 5.1

5 68 large serrate small serrate VDW 5.3 C 540 C 540 5.2 5.11 5.12 C 540 C 540 small serrate

5 69 average=2.2910-2 average=2.3210-2 Friction coefficient, µ 0.1 0.05 0 Friction coefficient, µ 0.1 0.05 0 0 3 6 Displacement of indenter, nm 0 3 6 Displacement of indenter, nm (a) C540 (b) @C540 Fig.5.3 Friction coefficient - displacement curves under scratch (small serrate indenter). Table 5.2 Indentation depth and friction coefficient (small serrate indenter). model name indentation depth [nm] friction coefficient C 540, small serrate indenter (C 540 -S) 2.07 2.29 10 2 C 2160, small serrate indenter (C 2160 -S) 4.18 1.73 10 2 C 540, small serrate indenter ( C 540 -S) 1.26 2.32 10 2 C 2160, small serrate indenter ( C 2160 -S) 1.86 1.18 10 2

5 70 (10 5 ) C 540 -S C 2160 -S @C 540 -S @C 2160 -S 2.0 Number of VDW bonds 1.5 1.0 0.5 0 3 6 Displacement of indenter, nm Fig.5.4 Number of VDW bonds - displacement curves under scratch (small serrate indenter). (a) C540-S (b) C2160-S element closeup element closeup (c) @C540-S (d) @C2160-S Fig.5.5 Snapshots after indentation (small serrate indenter).

第5章 薄膜構造での摩擦シミュレーション (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch Fig.5.6 Snapshots of C540 -S under scratch. (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch Fig.5.7 Snapshots of C540 -S under scratch. 71

5 72 average=2.5610-2 average=2.7110-2 0.2 0.2 Friction coefficient, µ 0.1 Friction coefficient, µ 0.1 0 0 0 3 6 Displacement of 0 3 6 indenter, nm Displacement of indenter, nm (a) C540 (b) @C540 Fig.5.8 Friction coefficient - displacement curves under scratch (large serrate indenter). Table 5.3 Indentation depth and friction coefficient (large serrate indenter). model name indentation depth [nm] friction coefficient C 540, large serrate indenter (C 540 -L) 2.48 2.56 10 2 C 2160, large serrate indenter (C 2160 -L) 4.45 1.46 10 2 C 540, large serrate indenter ( C 540 -L) 1.82 2.71 10 2 C 2160, large serrate indenter ( C 2160 -L) 2.16 1.07 10 2

5 73 (10 5 ) C 540 -L C 2160 -L @C 540 -L @C 2160 -L 2.0 Number of VDW bonds 1.5 1.0 0.5 0 3 6 Displacement of indenter, nm Fig.5.9 Number of VDW bonds - displacement curves under scratch (large serrate indenter). (a) C540-L (b) C2160-L element closeup element closeup (c) @C540-L (d) @C2160-L Fig.5.10 Snapshots after indentation (large serrate indenter).

第5章 薄膜構造での摩擦シミュレーション (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch Fig.5.11 Snapshots of C540 -L under scratch. (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch Fig.5.12 Snapshots of C540 -L under scratch. 74

5 75 5.2 5.2.1 OLC 5.13 small serrate 80000[fs] OLC 30000[fs] 1nm 14.9nm Fig.5.13 Schematic of simulation model ( C 540, small serrate substrate, small serrate indenter). 5.2.2 small serrate 5.14 5.14 (d) C 2160 (a) (c) 1.0[nm] small serrate 5.4 5.2

5 76 C 540 C 2160 8 C 540 4 C 2160 3 C 2160 < C 540 < C 2160 < C 540 5.15 C 2160 5.14(d) 5.16 5.19 5.16 5.19 5.6 5.7 large serrate 5.20 5.14 5.20(b) C 2160 5.14(a) (c) (a) C 540 3[nm] (c) (d) OLC 5.5 5.3 C 540 13 C 2160 18 C 540 8 C 2160 9 5.5 5.4 5.5 5.21 large serrate small serrate

5 77 5.4 5.5 large serrate 5.22 5.25 5.23 C 2160 small serrate 5.22 C 540 5.24 C 540 5.25 C 2160 C 540 C 540 C 2160 5.21 C 2160 5.22 5.24 C 540 C 2160 C 540 5.25 C 2160 C 2160

5 78 average=1.8810-1 average=1.4310-1 0.3 0.3 Friction coefficient, µ 0.2 0.1 Friction coefficient, µ 0.2 0.1 0 0 0 3 6 Displacement of indenter, nm 0 3 6 Displacement of indenter, nm (a) C540 (b) C2160 average=0.9010-1 average=0.3310-1 0.3 0.3 Friction coefficient, µ 0.2 0.1 Friction coefficient, µ 0.2 0.1 0 0 0 3 6 Displacement of indenter, nm 0 3 6 Displacement of indenter, nm (c) @C540 (d) @C2160 Fig.5.14 Friction coefficient - displacement curves under scratch (small serrate substrate, small serrate indenter).

5 79 Table 5.4 Indentation depth and friction coefficient (small serrate substrate, small serrate indenter). model name indentation depth [nm] friction coefficient C 540, small serrate substrate, small serrate indenter (C 540 -SS) 2.23 1.88 10 1 C 2160, small serrate substrate, small serrate indenter (C 2160 -SS) 4.35 1.43 10 1 C 540, small serrate substrate, small serrate indenter ( C 540 -SS) 1.47 0.90 10 1 C 2160, small serrate substrate, small serrate indenter ( C 2160 -SS) 2.01 0.33 10 1 (a) C540-SS (b) C2160-SS element closeup element closeup (c) @C540-SS (d) @C2160-SS Fig.5.15 Snapshots after indentation (small serrate substrate, small serrate indenter).

第5章 薄膜構造での摩擦シミュレーション 80 (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup closeup Fig.5.16 Snapshots of C540 -SS under scratch. (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup Fig.5.17 Snapshots of C2160 -SS under scratch. closeup

第5章 薄膜構造での摩擦シミュレーション 81 (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup closeup Fig.5.18 Snapshots of C540 -SS under scratch. (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup Fig.5.19 Snapshots of C2160 -SS under scratch. closeup

5 82 average=3.2910-1 average=2.6110-1 0.4 0.4 Friction coefficient, µ 0.2 Friction coefficient, µ 0.2 0 0 3 6 Displacement of indenter, nm 0 0 3 6 Displacement of indenter, nm (a) C540 (b) C2160 average=2.1010-1 average=1.0010-1 0.4 0.4 Friction coefficient, µ 0.2 Friction coefficient, µ 0.2 0 0 3 6 Displacement of indenter, nm 0 0 3 6 Displacement of indenter, nm (c) @C540 (d) @C2160 Fig.5.20 Friction coefficient - displacement curves under scratch (small serrate substrate, large serrate indenter).

5 83 Table 5.5 Indentation depth and friction coefficient (small serrate substrate, large serrate indenter). model name indentation depth [nm] friction coefficient C 540, small serrate substrate, large serrate indenter (C 540 -SL) 2.68 3.29 10 1 C 2160, small serrate substrate, large serrate indenter (C 2160 -SL) 4.56 2.61 10 1 C 540, small serrate substrate, large serrate indenter ( C 540 -SL) 2.04 2.10 10 1 C 2160, small serrate substrate, large serrate indenter ( C 2160 -SL) 2.34 1.00 10 1 (a) C540-SL (b) C2160-SL element closeup element closeup (c) @C540-SL (d) @C2160-SL Fig.5.21 Snapshots after indentation (small serrate substrate, large serrate indenter).

第5章 薄膜構造での摩擦シミュレーション 84 (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup closeup Fig.5.22 Snapshots of C540 -SL under scratch. (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup Fig.5.23 Snapshots of C2160 -SL under scratch. closeup

第5章 薄膜構造での摩擦シミュレーション 85 (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup closeup Fig.5.24 Snapshots of C540 -SL under scratch. (a) 0nm scratch (b) 2.5nm scratch (c) 5.0nm scratch (d) 7.5nm scratch closeup closeup closeup Fig.5.25 Snapshots of C2160 -SL under scratch. closeup

6 OLC OLC, OLC. 2, Stone-Wales 3 C 60 0.35nm 60n 2 n 1 bond. C 540 C 960 C 1500 C 2160 86

6 87 10 2 4 OLC 3 OLC OLC C 60 OLC OLC 10 2 1nm+0.5D(D: ) C 960 C 1500 5 OLC C 540 C 2160 C 540 C 2160 ( 2 ) 10 2 C 2160 < C 2160 < C 540 < C 540 10 1 C 2160 < C 540 < C 2160 < C 540 OLC

6 88 OLC 3 4 ( OLC )

[1] Kroto, H.W., Heath,J.R., O Brien, S.C., Curl, R.F., and Smalle, R.E., Nature, 318, (1985), 162. [2] Iijima, S., Nature, 354, (1991), 56. [3] Ugarte, D., Nature, 359, (1992), 707. [4] Kunetsov, V.L., Butenko, Yu.V., Chuvilin, A.L., Romanenko, A.I., Okotrub, A.V., Chem.Phs.Lett., 336, (2001), 397-404. [5],,, 67, (2001), 1175. [6] Kunetsov, V.L., Chuvilin, A.L., Butenko, Yu.V. et al, Chem.Phs.Lett., 222, (1994), 343. [7] Hirata, A., Igarashi, M., Kaito, T., Tribol.Int., 37, (2004), 899-905. [8] Matsumoto, N., Jol-Pottu, L., Kinoshita, H., Ohmae, N., Diamond.Relat.Mater, 16, (2007), 1227-1230. [9] Jol-Pottu, L., Vacher, B., Ohmae, N. et al, Tribol.Lett., 30, (2008), 69-80. [10] Jol-Pottu, L., Kinoshita, H. et al, Tribol.Int., 41, (2008), 69-78. [11] Cabioc h, T., Riviere, J.P., Delafond, J., J.Mater.Sci., 30, (1995), 4787-4792. [12] Banhart, F., Fuller, T., Redlich, Ph.D., Ajaan, P.M., Chem.Phs.Lett., 269, (1997), 349-355. [13] Cabioc h, T., Jaouen, M. et al, Appl.Phs.Lett., 73, (1998), 3096-3098. [14] (B ) 63, 611, (1997), 2398. [15] (B ) 76, 764, (2010), 642. 89

90 [16],,,, 55, (2006), 754. [17] Hirai, Y., et al., Jpn J Appl Phs., 42 6B, (2003), 4120. [18] Deguchi, H., Yamaguchi, Y. et al, Chem.Phs.Lett., 503, (2011), 272-276. [19] 10, 13, (2010). [20] Chico, L., Crespi, V.H., Benedict, L.X., Louie, S.G., Cohen, M.L., Phs.Rev.Lett., 76, 6, (1996), 971. [21] Lee, Y.H., Kim, S.G., Tomanek, D., Phs.Rev.Lett., 78, 12, (1997), 2393. [22], (2007), 531,. [23],, (1997), 79,. [24] Saito, R. et al, Chem.Phs.Lett., 195, (1992), 537-542. [25] Terrones, M. et al, Structural.Chem., 13, (2002), 373-384. [26] Wang, B.-C., Wang, H.-W., Chang, J.-C., Tso, H.-C., J.Mol.Struct., 540, (2001), 171-176. [27] Lu, J.P., Yang, W., Phs.Rev.B., 49, 16, (1994), 11421. [28] Bakowies, D. et al, J.Am.Chem.Soc., 117, (1995), 10113-10118. [29] Jol-Pottu, L., Buchol, E.W., Matsumoto, N. et al, Tribol.Lett., 37, (2010), 75-81. [30] Buchol, E.W., Phillpot, S.R. et al, Com.Mater.Sci., 54, (2012), 91-96. [31] Brenner, D.W., Phs.Rev.B., 42, 15, (1990), 9458. [32] Ahmadieh, A.A., Rafiadeh, H.A., Phs.Rev.B., 7, (1973), 4527. [33],, (1990),. [34] (2011).

OLC 1 ( 16 ),, (2011.5) OLC 24 CMD2011,, (2011.10) 25 CMD2012,, (2012.10) 91

92

93

94

95

96

97

98

( ) ( ). 25 2 99