I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column



Similar documents
CharacterSets.book Japanese


128号新

J. JAPANESE ASSOC. PETROL. TECHNOL. Vol. 62, No. 2 (1997)

ブロック体A

csj-report.pdf

( ) œ 18,120,000 18,000,000 j 120, , ,122,619 1,697,600, ,316.63fl 306,200, fl 201,000, f

é é ô


untitled

untitled

untitled

untitled

Ÿ ( ) 360, , , , , , ,649, ,262,557 15,709,106 76,553,451 85,612,669 (24) 1,250,000 75,3

広報いるま平成19年12月15日号

untitled

( š ) 4,000,000 i 200,000, ,000 1,697,600, ,316.63fl 306,200, fl 201,000, fl 33,300,

untitled

( ) š , , , , ,

( š ) Ÿ 4,086,376 76,423 3,702, , ,305 7, , , , ,000 3,342, ,745, ,728 42,017,278 41,879,733 4

官報(号外第196号)

š ( š ) Ÿ 1,681, ,000 16,519,700 (826) 1,661, ,613, ,273 54,747,951 55,613,224 2,568,266 2,568,266 52,179,685 52,179,685 33,

š ( ) šœ 190, , , ,254, ,619, ,619,670 32,634,330 32,634, ,000 34,204,595 15,747, , ,379 17,051,987 11

Microsoft Word - charles-gyouseki.rtf

新郷村ホームページ

BRA1195A_Ja_001_009.p65

cjnl22

第5章 偏微分方程式の境界値問題

JFE.dvi

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

O

ì ì 2




Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

82

untitled

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

NOW-PDFŠp

平成16年度標準技術集


untitled

演題

’¸’_Ł\”ƒ1-4fiñŒÊ


00−ìfic„h-flO“Z.ec6

vv#46jp

untitled

‰ž‚å“LŁñ567“ƒ/2002.4

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

[3] M.C. Escher Escher 1 Escher Escherization Problem [5] Escherization Problem S ( 1 ) T S ( 2 ) T T [5] Escherization Problem isohedral isohe

ðE (’Ó)

ç í ç

DMC-SZ3


x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

š ( š ) œš 1,179,203 1,179, , , , , , , , ,497 23, , ,

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

untitled

”w™è01 (1-34)

soturon.dvi

ìì 2

untitled

ron0223.dvi

+小澤悦夫.indd

200708_LesHouches_02.ppt

may-fest.dvi

š ( ) ,987,270,000 2,550,000,000 3,367,410,490 2,304,024,754 1,063,385, ,385,736 2,170,000, ,580, ,58


Grund.dvi


untitled

Copyright c 2000 by Yoshihide Tomiyama

B 温泉用語集v2 ABC順 xls

, ,0006,0003,0004,0002,0003,

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

総研大「大学共同利用機関の歴史とアーカイブズ」プロジェクト全体会(2008年度)



numb.dvi

untitled

16) 12) 14) n x i, (1 i < n) x 1 = x 2 = = x n. (6) L = D A (1) D = diag(d 1,d 2,,d n ) n n A d i = j i a i j 9) 0 a 12 a 13 a 14 A = a 21 0 a

johnny-paper2nd.dvi

Ì Ì

1

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

三石貴志.indd

Fig. 1 Relative delay coding.

untitled

生物の運動を目指して

IPSJ SIG Technical Report Vol.2011-HPC-131 No /10/6 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus T

吉本班(最終版2007)

Design Management with Structural Analysis of the Product Systems Fig. 1: Interrelated Complexities among Multiple Domains in Product Design [1] Fig.


株式会社タカラ様

04-04 第 57 回土木計画学研究発表会 講演集 vs

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

Transcription:

I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column vector) (row vector)....... 12 1.1.3.............................. 12 1.1.4............................ 13 1.1.5 (linearly dependent) (rank) (singularity) (Determinant)........................... 14 1.2 (product)........................... 15 1.2.1.............................. 15 1.2.2 (Dyad Product)..................... 16 1.2.3 (Orthogonal Matrix)................. 17 1.2.4 (Inversed Matrix).................... 18 1.3 (Coordinate Transformation) (Similar Transformation) (Congruent Transformation) (Orthogonal Transformation).................................... 18 1.3.1.......................... 18 1.3.2................................. 19 1.4 (Linear Equation)......................... 19 1.4.1 (Gauss Elimination Method)............ 19 1.4.2 (Choleski Method)................... 20 1.5 (Eigenvalue Problem)....................... 20 1.5.1 (Eigenvalue) (Eigenvector).......... 20 1.5.2 (Eigenvalue Problem of Second Order)...... 21 1.6 (Differentiation) (Integration)........... 21 1.6.1.................... 21 1.6.2.................... 21 1.7 (Numerical Method)................ 22 1.7.1............................... 22 3

4 1.7.2............................... 22 2 23 2.1.................................. 23 2.1.1............................... 23 2.1.2.............................. 27 2.2................................ 29 2.2.1.................................. 29 2.2.2................................. 30 2.2.3............................ 31 2.2.4..................... 33 2.2.5 Lagrange............................ 34 2.2.6................................. 36 2.3.......................... 38 2.3.1.................................. 38 2.3.2.............................. 38 2.3.3................................... 38 2.3.4 Ritz.................................. 39 2.3.5 Galerkin............................... 41 2.3.6.................... 43 3 45 3.1................................. 45 3.1.1.......................... 45 3.1.2........................ 46 3.1.3........................ 47 3.2................................. 49 3.2.1........................ 49 3.2.2..................... 50 3.2.3..................... 50 3.2.4............................... 50 3.2.5.............................. 51 3.2.6....................... 53 3.2.7 y = f(x)..................... 55 3.3 Frenet.................................. 56 3.4....................................... 58 3.4.1........................ 58 3.4.2.............................. 60 3.4.3............................... 62

5 3.4.4............................... 63 3.4.5........................ 64 3.4.6 Munier..................... 67 3.4.7.......................... 67 3.4.8.................. 71 3.4.9 Gauss-Codazzi......................... 73 3.5................................... 73 3.6..................................... 74 3.6.1............................... 75 3.6.2............................... 76 3.6.3............................ 77 II 81 4 83 4.1...................................... 83 4.2............................. 84 4.3................................. 86 4.3.1................................... 86 4.3.2............................. 88 4.3.3 Kirchhoff-Love..................... 89 4.4........................ 94 4.4.1 Hooke.............................. 95 4.4.2................ 95 4.4.3............. 96 4.5................................... 97 4.5.1............ 97 4.5.2 Hamilton........... 100 4.6.......................... 105 4.6.1............................. 105 4.6.2............................... 107 4.6.3.......................... 109 4.6.4......................... 111 4.6.5............................... 113 5 115 5.1........................ 115 5.2.............................. 121 5.2.1.................... 121

6 5.2.2.................. 122 5.2.3.............. 123 6 127 6.1........................ 127 6.2.................. 127 6.3 3.......................... 129 6.4....................... 131 6.4.1........................ 131 6.4.2 (Principle of Virtual Work)......... 132 6.4.3..................... 134 6.5..................... 135 7 137 7.1................................. 137 7.2 (discretization)............................. 138 7.2.1.............................. 138 7.2.2............................. 139 7.2.3............................... 142 7.2.4............................... 142 7.2.5................................... 143 7.3..................... 143 7.3.1....................... 143 7.3.2.................... 144 7.3.3 {b} {t}..................... 144 7.3.4................... 145 7.3.5............................... 145 7.3.6................................... 147 7.4 FEM............................. 147 8 149 8.1.......................... 149 8.2................................. 150 8.2.1............... 151 8.2.2 ESO..................... 151 8.3...................... 151 8.3.1........................ 154 8.3.2............................ 154 8.3.3.......................... 154 8.4........................... 154

7 A - 161 A.1....................................... 161 A.2 ε i..................................... 163 A.3 γ ij.................................... 163

8 8.1 1990 [12] analysis chemical analysis 8.1 149

150 \ Œ` Ô ð Í Þ Œ` ó ŽxŽ ðœ d ðœ \ Œ` Ž \ Œ³ \ ð Í \ Œ` Ô n \ «\ ÏŒ` ž Í Ï Í ˆÀ S «Œo Ï «ü µ ³ Fig. 8.1: 8.2 [8] 19 1980 [3] ESO

151 8.2.1 (GA, Genetic Algorithm) (Genetic Plans) Holland [2] Michigan Goldberg [1] GA 8.2 [9, 5, 5, 7, 6] (IA, Immune Algorithm) [13] 8.2.2 ESO CA Cellular Automata 1940 von Neumann CA [14](ADFEM, Autonomous Decentralized Finite Element Method) [4] ESO, Evolutionary Structural Optimization ADFEM ESO 8.3 ESO [10, 11] 8.3

152 ƒ_ƒuƒ ƒœƒa [ Eƒgƒ ƒxƒh [ƒ ª ̃gƒ ƒx ƒvƒ ƒoƒ ƒœƒa [ EƒtƒŒ [ƒ ƒh [ƒ Fig. 8.2: GA

153 Step 1 Step 1 Step 2 Step 2 Step 3 iƒaƒxƒyƒnƒg ä @1 : 2 j Step 3 iƒaƒxƒyƒnƒg ä @1 : 4 j Step 1 Step 2 Step 3 iƒaƒxƒyƒnƒg ä @1 : 8 j Fig. 8.3: ESO

154 8.3.1 von Mises ESO [10] 8.4 ESO 8.3.2 8.5 8.3.3 400m 42m von Mises ESO [10] 8.6 8.4

Fig. 8.4: 155

156 Fig. 8.5:

157 ŠúŒ` Ô ŽxŽ ª B ðžn ß é ƒxƒpƒ ûœüœ` Ô É Ï» ÀŠÔ ûœüœ` Ô É à Ï» ÀŠÔ ûœüœ` Ô ªŒp ± I É Ï» \ ªŽŸ æ É ª» œši ª ¾ Ä É Ì pœ` Ô Fig. 8.6: S \ C[W Fig. 8.7:

158 Fig. 8.8: 8.8 21

[1] Genetic Algorithms in Search, Optimization and Machine Learning. Addison- Wesley Publishing Company. [2] Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. the MIT Press, Cambridge, Massachusetts, London, England, 1992. [3] M. P. Bendsoe and N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computational Methods in Applied Mechanics and Engineering, Vol. 71, pp. 197 224, 1988. [4] Y.M. Xie and G.P. Steven. Evolutionary Structural Optimization. Springer-Verlag, 1997. [5],.., No. 538, pp. 115 121, 2000. [6],.., No. 555, pp. 121 128, 2002. [7],,.., Vol. 47B, pp. 1 6, 2001. [8]. - -.. [9],.., No. 520, pp. 85 92, 1999. [10],. eso., No. 539, pp. 87 94, 2001. [11],. eso., No. 552, pp. 109 116, 2002. [12]. 5, pp. 10 13, 40 43, 100 105., 1998. 159

160 [13],,.., Vol. 49B,, 2003. [14],,.., No. 526, pp. 68 76, 1999.